Skip to main content
Log in

Potential application of doped hexa-peri-hexabenzocoronene as NH3 gas sensor: a computational investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, density functional theory calculations were carried out to investigate the adsorption of NH3 gas on the pristine and B- and Al-doped hexa-peri-hexabenzocoronenes (HBCs). The results indicated that the adsorption of NH3 molecule on pristine HBC is quite weak, while both B- and Al-doped HBCs can strongly adsorb NH3 molecule. The significant increase in band gap was observed in the B-doped HBCs, which confirms the high sensitivity of the B-doped HBCs towards NH3 molecule. Also, our calculations show that pristine HBC cannot detect the presence of NH3 gas. The nature of interactions was characterized by the non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. Based on the overall results, B-doped HBCs are promising candidates for sensing ammonia molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  3. Yao B, Wu Y, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K (2014) Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt Express 22:28154–28162

    Article  CAS  Google Scholar 

  4. Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Santucci S, Ottaviano L (2013) Graphene oxide as a practical solution to high sensitivity gas sensing. J Phys Chem C 117:10683–10690

    Article  CAS  Google Scholar 

  5. Yuan W, Liu A, Huang L, Li C, Shi G (2013) High-performance NO2 sensors based on chemically modified graphene. Adv Mater 25:766–771

    Article  CAS  Google Scholar 

  6. Ren W, Mura S, Irudayaraj JM (2015) Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water. Talanta 143:234–239

    Article  CAS  Google Scholar 

  7. Park M-S, Kim KH, Kim M-J, Lee Y-S (2016) NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf A Physicochem Eng Asp 490:104–109

    Article  CAS  Google Scholar 

  8. Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sensors Actuators B Chem 221:1170–1181

    Article  Google Scholar 

  9. Sun KG, Hur SH (2015) Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sensors Actuators B Chem 210:618–623

    Article  Google Scholar 

  10. Nayak JK, Parhi P, Jha R (2015) Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor. Sensors Actuators B Chem 221:835–841

    Article  CAS  Google Scholar 

  11. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  12. Cappelli E, Orlando S, Servidori M, Scilletta C (2007) Nano-graphene structures deposited by N-IR pulsed laser ablation of graphite on Si. Appl Surf Sci 254:1273–1278

    Article  CAS  Google Scholar 

  13. Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF (2015) Construction of an internally B3N3-doped nanographene molecule. Angew Chem Int Ed 54:8284–8286

    Article  CAS  Google Scholar 

  14. Narita A, Wang X-Y, Feng X, Müllen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616–6643

    Article  CAS  Google Scholar 

  15. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101

    Article  CAS  Google Scholar 

  16. Chen L, Hernandez Y, Feng X, Müllen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed 51:7640–7654

    Article  CAS  Google Scholar 

  17. Liu X-T, Guo J-F, Ren A-M, Huang S, Feng J-K (2012) Nonlinear optical properties for a class of hexa-peri-hexabenzocoronene chromophores: a computational investigation. Dalton Trans 41:12416–12427

    Article  CAS  Google Scholar 

  18. Keerthi A, Hou ICY, Marszalek T, Pisula W, Baumgarten M, Narita A (2016) Hexa-peri-hexabenzocoronene with different acceptor units for tuning optoelectronic properties. Chem Asian J 11:2710–2714

    Article  CAS  Google Scholar 

  19. Tönshoff C, Müller M, Kar T, Latteyer F, Chassé T, Eichele K, Bettinger HF (2012) B3N3 Borazine substitution in hexa-peri-hexabenzocoronene: computational analysis and scholl reaction of hexaphenylborazine. ChemPhysChem 13:1173–1181

    Article  Google Scholar 

  20. Li Z, Lin Z, Wang N, Wang J, Liu W, Sun K, Fu YQ, Wang Z (2016) High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sensors Actuators B Chem 235:222–231

    Article  CAS  Google Scholar 

  21. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  Google Scholar 

  22. Beheshtian J, Peyghan AA, Bagheri Z (2013) Carbon nanotube functionalization with carboxylic derivatives: a DFT study. J Mol Model 19:391–396

    Article  CAS  Google Scholar 

  23. Zhao C, Jiao Y, Hu F, Yang Y (2017) Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection. Spectrochim Acta, Part A

  24. Jameh-Bozorghi S, Soleymanabadi H (2017) Warped C80H30 nanographene as a chemical sensor for CO gas: DFT studies. Phys Lett A 381:646–651

    Article  CAS  Google Scholar 

  25. Bhatia S, Verma N, Bedi R (2017) Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys 7:801–806

    Article  Google Scholar 

  26. Timmer B, Olthuis W, Van den Berg A (2005) Ammonia sensors and their applications—a review. Sensors Actuators B Chem 107:666–677

    Article  CAS  Google Scholar 

  27. Ugale AD, Jagtap RV, Pawar D, Datar S, Kale SN, Alegaonkar PS (2016) Nano-carbon: preparation, assessment, and applications for NH3 gas sensor and electromagnetic interference shielding. RSC Adv 6:97266–97275

    Article  CAS  Google Scholar 

  28. Vatanparast M, Nekoei A-R (2015) RAHB concept and σ-skeleton in some oximes of 3-hydroxy fulvene; DFT, AIM, ELF and NBO studies. Struct Chem 26:1039–1048

    Article  CAS  Google Scholar 

  29. Nekoei AR, Vatanparast M (2014) An intramolecular hydrogen bond study in some Schiff bases of fulvene: a challenge between the RAHB concept and the σ-skeleton influence. New J Chem 38:5886–5891

    Article  CAS  Google Scholar 

  30. Vatanparast M (2014) Cooperativity between the halogen bonding and halogen–hydride bonding in NCX⋯ NCX⋯ HMgY complexes (X= F, Cl, Br; Y= H, F, Cl, Br, CH 3, Li). Comput Theor Chem 1048:77–83

    Article  CAS  Google Scholar 

  31. Vatanparast M, Taghizadeh MT, Parvini E (2015) Theoretical insight into the interplay between lithium and halogen–hydride bonds: an ab initio study. J Theor Comput Chem 14:1550046

    Article  CAS  Google Scholar 

  32. Parvini E, Vatanparast M, Saedi L (2017) Ab initio studies on the interplay between unconventional B•••X halogen bond and lithium/hydrogen/halogen bond in HB (CO)2•••XCN••• YF (X= Cl, Br; Y= Li, H, Cl) complexes. Phys Chem Res 5:771–781

    Google Scholar 

  33. Bahrami A, Yourdkhani S, Esrafili MD, Hadipour NL (2014) A DFT study on doping assisted changing of B80 electronic structure: promising candidates for NH3 sensor. Sensors Actuators B Chem 191:457–463

    Article  CAS  Google Scholar 

  34. Baei MT, Tavakoli K, Hashemian S, Torabi P (2015) C30B15N15 heterofullerene as a potential electronic sensor for NO detection. Fullerenes, Nanotubes, Carbon Nanostruct 23:153–157

    Article  CAS  Google Scholar 

  35. Fan G-h, Zhu S, Li X-k, Ni K, Xu H (2017) Ab initio investigation of pristine and doped single-walled boron nitride nanotubes as acetone sensor. Comput Theor Chem 1115:208–216

    Article  CAS  Google Scholar 

  36. Saadat K, Tavakol H (2016) Study of noncovalent interactions of end-caped sulfur-doped carbon nanotubes using DFT, QTAIM, NBO and NCI calculations. Struct Chem 27:739–751

    Article  CAS  Google Scholar 

  37. Baei MT, Peyghan AA, Bagheri Z (2013) Carbon nanocone as an ammonia sensor: DFT studies. Struct Chem 24:1099–1103

    Article  CAS  Google Scholar 

  38. Nagarajan V, Chandiramouli R (2014) NiO nanocone as a CO sensor: DFT investigation. Struct Chem 25:1765–1771

    Article  CAS  Google Scholar 

  39. Azizi K, Karimpanah M (2013) Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO 2 sensors. Appl Surf Sci 285:102–109

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B03. Gaussian, Inc, Pittsburgh

    Google Scholar 

  41. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  42. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1995) NBO version 31

  43. Biegler Konig FW, Schonbohm J, Bayles D (2001) AIM2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  45. O'Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  46. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119:6398–6404

    Article  CAS  Google Scholar 

  47. Breuer T, Klues M, Liesfeld P, Viertel A, Conrad M, Hecht S, Witte G (2016) Self-assembly of partially fluorinated hexabenzocoronene derivatives in the solid state. Phys Chem Chem Phys 18:33344–33350

    Article  CAS  Google Scholar 

  48. Dai Y, Li Z, Yang J (2015) A density functional study of the nonlinear optical properties of edge-functionalized nonplanar nanographenes. ChemPhysChem 16:2783–2788

    Article  CAS  Google Scholar 

  49. Maghsoumi A, Narita A, Dong R, Feng X, Castiglioni C, Müllen K, Tommasini M (2016) Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy. Phys Chem Chem Phys 18:11869–11878

    Article  CAS  Google Scholar 

  50. Salari AA (2017) Detection of NO2 by hexa-peri-hexabenzocoronene nanographene: a DFT study. C R Chim

  51. Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlali L, Bekhradnia A (2017) A comparative computational study on the BN ring doped nanographenes. Appl Surf Sci 396:740–745

    Article  CAS  Google Scholar 

  52. Yamaguchi R, Ito S, Lee BS, Hiroto S, Kim D, Shinokubo H (2013) Functionalization of hexa-peri-hexabenzocoronenes: investigation of the substituent effects on a superbenzene. Chem Asian J 8:178–190

    Article  CAS  Google Scholar 

  53. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vatanparast.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The manuscript has not been previously published, is not currently submitted for review to any other journal, and will not be submitted elsewhere before a decision is made by this journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, N., Vatanparast, M. Potential application of doped hexa-peri-hexabenzocoronene as NH3 gas sensor: a computational investigation. Struct Chem 29, 929–935 (2018). https://doi.org/10.1007/s11224-018-1076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1076-6

Keywords

Navigation