Skip to main content
Log in

Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nanoscale graphene platelet (NGP) or graphene nanosheet is an emerging class of nanomaterials. An NGP is a nanoscale platelet composed of one or more layers of a graphene plane, with a platelet thickness from less than 0.34 to 100 nm. NGPs are predicted to have a range of unusual physical, chemical, and mechanical properties. Although practical electronic device applications for graphene are not envisioned to occur within the next 5–10 years, its application as a nanofiller in a composite material is imminent. The availability of processable graphene sheets in large quantities is essential to the success in exploiting composite and other applications. This review first describes the earlier processes for producing mostly multi-layer NGPs and their composites, which is followed by a discussion on the recent developments in the preparation of single-layer NGPs and their nanocomposites. Fundamental principles behind processing of nanographene materials are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Science 306:666. doi:https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F et al (2005) Proc Natl Acad Sci USA 102:10451. doi:https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  3. Jang BZ, Huang WC (2006) US Patent 7,071,258, (submitted on 21 Oct 2002 and issued on 4 Jul 2006)

  4. Jang BZ (2006) US Patent 11/442,903 (20 Jun 2006); a divisional of 10/274,473 (21 Oct 2002)

  5. Schwalm W, Schwalm M, Jang BZ (2004) American Physical Society Montreal, Canada

  6. McAllister MJ, Li JL, Adamson DH et al (2007) Chem Mater 19:4396. doi:https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  7. Li JL, Kudin KN, McAllister MJ et al (2006) Phys Rev Lett 96:176101. doi:https://doi.org/10.1103/PhysRevLett.96.176101

    Article  CAS  Google Scholar 

  8. Schniepp HC, Li JL, McAllister MJ et al (2006) J Phys Chem B 110:8535. doi:https://doi.org/10.1021/jp060936f

    Article  CAS  Google Scholar 

  9. Li X, Wang X, Zhang L, Lee S et al (2008) Science 319:1229–1. doi:https://doi.org/10.1126/science.1150878

    Article  CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV et al (2005) Nature 438:197. doi:https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  11. Zhang Y, Ando T (2002) Phys Rev Lett B65:245420

    Google Scholar 

  12. Zhang Y, Tan YW, Stormer HL et al (2005) Nature 438:201. doi:https://doi.org/10.1038/nature04235

    Article  CAS  Google Scholar 

  13. Zhang Y, Small JP, Amori ME et al (2005) Phys Rev Lett 94:176803. doi:https://doi.org/10.1103/PhysRevLett.94.176803

    Article  CAS  Google Scholar 

  14. Berger C, Song Z, Li T et al (2004) J Phys Chem B 108:19912. doi:https://doi.org/10.1021/jp040650f

    Article  CAS  Google Scholar 

  15. Enoki T, Kobayashi Y (2005) J Mater Chem 15:3999. doi:https://doi.org/10.1039/b500274p

    Article  CAS  Google Scholar 

  16. Heersche HB, Jarillo-Herrero P, Oostinga JB et al (2007) Nat Lett 446:56. doi:https://doi.org/10.1038/nature05555

    Article  CAS  Google Scholar 

  17. Soon YW, Cohen ML, Louie SG (2006) Nat Lett 444:347. doi:https://doi.org/10.1038/nature05180

    Article  CAS  Google Scholar 

  18. Meyer JC, Geim AK, Katsnelson MI et al (2007) Nat Lett 446:60. doi:https://doi.org/10.1038/nature05545

    Article  CAS  Google Scholar 

  19. Wong SC, Sutherland EM, Jang BZ (2004) Proceedings of the 62nd SPE ANTEC, Chicago, IL, 2004

  20. Wong SC, Sutherland E, Jang BZ (2004) Proceedings of NSF design and manuf. Grantees and research Conf. Dallas, TX, 2004

  21. Fukushima H, Lee SH, Drzal LT (2004) Proceedings of the 62nd SPE ANTEC, Chicago, IL, 2004

  22. Yasmin A, Daniel IM (2004) Polymer 45:8211. doi:https://doi.org/10.1016/j.polymer.2004.09.054

    Article  CAS  Google Scholar 

  23. Stankovich S (2006) J Mater Chem 16:155. doi: 10.1039/b512799 h

    Article  CAS  Google Scholar 

  24. Stankovich S, Piner RD, Nguyen ST et al (2006) Carbon 44:3342. doi:https://doi.org/10.1016/j.carbon.2006.06.004

    Article  CAS  Google Scholar 

  25. Stankovich S, Dikin DA, Dommett G et al (2006) Nat Lett 442:282. doi:https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  26. Bunnell LR Sr (1991) US Patent 987(4):175

  27. Bunnell LR Sr (1991) US Patent 019(5):446

  28. Bunnell LR Sr (1993) US Patent 186(5):919

  29. Zaleski PL, Derwin DJ, Girkant RJ et al (2001) US Patent 287(6):694

  30. Mazurkiewicz M (2002) US Patent Application No. 09/951,532; Pub. No. US 2002/0054995 (Published on 9 May 2002)

  31. Shioyama H (2001) J Mater Sci Lett 20:499. doi:https://doi.org/10.1023/A:1010907928709

    Article  CAS  Google Scholar 

  32. Horiuchi S, Gotou T, Fujiwara M et al (2004) Appl Phys Lett 84:2403 (paper received on 8 September 2003)

    Article  CAS  Google Scholar 

  33. Horiuchi S, Gotou T, Fujiwara M et al (2003) Jpn J Appl Phys 42(Part 2):L1073. doi:https://doi.org/10.1143/JJAP.42.L1073

    Article  CAS  Google Scholar 

  34. Hirata M, Horiuchi S (2003) US Patent 596(6):396

    Google Scholar 

  35. Hirata M, Gotou T, Ohba M (2005) Carbon 43:503. doi:https://doi.org/10.1016/j.carbon.2004.10.009

    Article  CAS  Google Scholar 

  36. Hirata M, Gotou T, Horiuchi S et al (2004) Carbon 42:2929

    CAS  Google Scholar 

  37. Hummers WS (1957) US Patent 798(2):878

    Google Scholar 

  38. Hummers WS (1958) J Am Chem Soc 80:1339. doi:https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  39. Liu P, Gong K (1999) Carbon 37:706. doi:https://doi.org/10.1016/S0008-6223(99)00037-8

    Article  CAS  Google Scholar 

  40. Dekany I, Kruger-Grasser R, Weiaa A (1998) Colloid Polym Sci 276:570. doi:https://doi.org/10.1007/s003960050283

    Article  CAS  Google Scholar 

  41. Roy HV, Kallinger C, Marsen B et al (1998) J Appl Phys 83:4695. doi:https://doi.org/10.1063/1.367257

    Article  CAS  Google Scholar 

  42. Lu XK, Yu MF, Huang H et al (1999) Nanotechnology 10:269. doi:https://doi.org/10.1088/0957-4484/10/3/308

    Article  CAS  Google Scholar 

  43. Land TA, Michely T, Behm RJ et al (1992) Surf Sci 264:261. doi:https://doi.org/10.1016/0039-6028(92)90183-7

    Article  CAS  Google Scholar 

  44. Nagashima A, Nuka K, Itoh H et al (1993) Surf Sci 291:93. doi:https://doi.org/10.1016/0039-6028(93)91480-D

    Article  CAS  Google Scholar 

  45. van Bommel AJ, Crombeen JE, van Tooren A (1975) Surf Sci 48:463. doi:https://doi.org/10.1016/0039-6028(75)90419-7

    Article  Google Scholar 

  46. Forbeaux I, Themlin J-M, Debever JM (1998) Phys Rev B 58:16396. doi:https://doi.org/10.1103/PhysRevB.58.16396

    Article  CAS  Google Scholar 

  47. Oshima C, Nagashima A (1997) J Condens Matter 9:1. doi:https://doi.org/10.1088/0953-8984/9/1/004

    Article  CAS  Google Scholar 

  48. Wu Y, Chong C (2003) US Patent Appl. No. 10/124,188 (US Pub. No. 2003/0129305, 10 July 2003)

  49. Shioyama H (1997) Carbon 35:1664. doi:https://doi.org/10.1016/S0008-6223(97)82797-2

    Article  CAS  Google Scholar 

  50. Matsuo Y, Tahara K, Sugie Y (1998) Chem Mater 10:2266. doi:https://doi.org/10.1021/cm980203a

    Article  CAS  Google Scholar 

  51. Xu JY, Hu Y, Song L et al (2001) Polym Degrad Stab 73:29. doi:https://doi.org/10.1016/S0141-3910(01)00046-5

    Article  CAS  Google Scholar 

  52. Xu JY (2002) Carbon 40:445. doi:https://doi.org/10.1016/S0008-6223(01)00133-6

    Article  Google Scholar 

  53. Xu JY, Hu Y, Song L et al (2001) Mater Res Bull 36:1833. doi:https://doi.org/10.1016/S0025-5408(01)00662-6

    Article  CAS  Google Scholar 

  54. Xu JY (2002) Carbon 40:2961. doi:https://doi.org/10.1016/S0008-6223(02)00207-5

    Article  Google Scholar 

  55. Liu PG, Gong K, Xiao P et al (2002) J Mater Chem 10:933. doi: 10.1039/a908179 h

    Article  Google Scholar 

  56. Matsuo Y, Sugie Y (1998) Carbon 36:301. doi:https://doi.org/10.1016/S0008-6223(98)80120-6

    Article  CAS  Google Scholar 

  57. Xiao P, Xiao M, Liu PG et al (2000) Carbon 38:626. doi:https://doi.org/10.1016/S0008-6223(00)00005-1

    Article  CAS  Google Scholar 

  58. Hamwi A, Marchand V (1996) J Phys Chem Solids 57:867. doi:https://doi.org/10.1016/0022-3697(96)00364-2

    Article  CAS  Google Scholar 

  59. Lerf A, He HY, Forester M (1998) J Phys Chem B 102:4477. doi:https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  60. Matsuo Y, Tahara K, Sugie Y (1996) Carbon 34:672. doi:https://doi.org/10.1016/0008-6223(96)85961-6

    Article  CAS  Google Scholar 

  61. Kotov NA, Dekany I, Fendler JH (1996) Adv Mater 8:637. doi:https://doi.org/10.1002/adma.19960080806

    Article  CAS  Google Scholar 

  62. Matsuo Y, Tahara K, Sugie Y (1997) Carbon 35(1):113. doi:https://doi.org/10.1016/S0008-6223(96)00123-6

    Article  CAS  Google Scholar 

  63. Cassagneau T, Fendler JH (1998) Adv Mater 10(11):877. doi :10.1002/(SICI)1521-4095(199808)10:11<877::AID-ADMA877>3.0.CO;2-1

    Article  CAS  Google Scholar 

  64. Cassagneau T, Guerin F, Fendler JH (2000) Langmuir 16:7318. doi:https://doi.org/10.1021/la000442o

    Article  CAS  Google Scholar 

  65. Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Chem Mater 11:771. doi:https://doi.org/10.1021/cm981085u

    Article  CAS  Google Scholar 

  66. Szabo T, Szeri A, Dekany I (2005) Carbon 43:87. doi:https://doi.org/10.1016/j.carbon.2004.08.025

    Article  CAS  Google Scholar 

  67. Xiao P, Xiao M, Gong KC (2001) Polymer 42:4813. doi:https://doi.org/10.1016/S0032-3861(00)00819-3

    Article  CAS  Google Scholar 

  68. Xiao M, Sun LY, Liu JJ et al (2001) Polymer 43(8):2245. doi:https://doi.org/10.1016/S0032-3861(02)00022-8

    Article  Google Scholar 

  69. Chen GH, Wu DJ, Weng W et al (2001) J Appl Polym Sci 82:2506. doi:https://doi.org/10.1002/app.2101

    Article  CAS  Google Scholar 

  70. Chen GH (2003) Polymer (Guildf) 44:1781. doi:https://doi.org/10.1016/S0032-3861(03)00050-8

    Article  CAS  Google Scholar 

  71. Chen GH, Wu D, Weng W (2003) Carbon 41:619. doi:https://doi.org/10.1016/S0008-6223(02)00409-8

    Article  CAS  Google Scholar 

  72. Chen GH, Weng W, Wu D et al (2003) Eur Polym J 39:2329. doi:https://doi.org/10.1016/j.eurpolymj.2003.08.005

    Article  CAS  Google Scholar 

  73. Chen GH (2004) Carbon 42:753. doi:https://doi.org/10.1016/j.carbon.2003.12.074

    Article  CAS  Google Scholar 

  74. Zheng W, Wong SC, Sue HJ (2002) Polymer 73:6767. doi:https://doi.org/10.1016/S0032-3861(02)00599-2

    Article  Google Scholar 

  75. Zheng W, Wong SC (2003) Compos Sci Technol 63:225. doi:https://doi.org/10.1016/S0266-3538(02)00201-4

    Article  CAS  Google Scholar 

  76. Pan YX, Yu Z, Ou Y et al (2000) J Polym Sci Part B. Polym Phys 38:1626. doi :10.1002/(SICI)1099-0488(20000615)38:12,<1626::AID-POLB80>3.0.CO;2-R

  77. Shen JW, Chen XM, Huang WY (2003) J Appl Polym Sci 88:1864. doi:https://doi.org/10.1002/app.11892

    Article  CAS  Google Scholar 

  78. Du XS, Xiao M, Meng YZ et al (2004) Synth Met 143:129. doi:https://doi.org/10.1016/j.synthmet.2003.10.023

    Article  CAS  Google Scholar 

  79. Udy JD (2006) US Patent Application No. 11/243,285 (Oct. 4, 2005); Pub No. 2006/0269740 (30 Nov 2006)

  80. Jang BZ, Wong SC, Bai Y (2005) US Patent Appl. No. 10/858,814 (3 June 2004); Pub. No. US 2005/0271574 (Pub. 8 Dec 2005)

  81. Petrik VI (2006) US Patent Appl. No. 11/007,614 (7 Dec 2004); Publ No. US 2006/0121279 (Pub. 8 June 2006)

  82. Drzal LT, Fukushima H (2006) US Patent Appl. No. 11/363,336 (27 Feb 2006); 11/361,255 (Feb. 24, 2006); 10/659,577 (10 Sept 2003)

  83. Mack JJ, Viculis LM, Kaner RB et al (2005) US Patent 872(6):330

  84. Viculis LM, Mack JJ, Kaner RB (2003) Science 299:1361. doi:https://doi.org/10.1126/science.1078842

    Article  CAS  Google Scholar 

  85. Mack JJ, Viculis LM, Ali A et al (2005) Adv Mater 17:77. doi:https://doi.org/10.1002/adma.200400133

    Article  CAS  Google Scholar 

  86. Li D, Muller MC, Gilje S et al (2008) Nat Nanotechnol 3:101. doi:https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  87. Geim AK, Novoselov KS (2007) Nat Mater 6:183. doi:https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  88. Li J, Kim JK, Sham ML (2005) Scr Mater 53:235. doi:https://doi.org/10.1016/j.scriptamat.2005.03.034

    Article  CAS  Google Scholar 

  89. Du XS, Xiao M, Meng YZ et al (2005) Carbon 43:195. doi:https://doi.org/10.1016/j.carbon.2004.06.036

    Article  CAS  Google Scholar 

  90. Martin WH, Brocklehurst JE (1964) Carbon 1:133. doi:https://doi.org/10.1016/0008-6223(64)90067-3

    Article  CAS  Google Scholar 

  91. Chung DDL (1987) J Mater Sci 22:4190. doi:https://doi.org/10.1007/BF01132008

    Article  CAS  Google Scholar 

  92. Anderson SH, Chung DDL (1984) Carbon 22(3):253. doi:https://doi.org/10.1016/0008-6223(84)90169-6

    Article  CAS  Google Scholar 

  93. Span R, Wagner WA (1996) J Phys Chem Ref Data 25:1509

    Article  CAS  Google Scholar 

  94. Gomez-Navarro C, Weitz RT, Bittner AM et al (2007) Nano Lett 7(11):3499. doi:https://doi.org/10.1021/nl072090c

    Article  CAS  Google Scholar 

  95. Gilge S, Han S, Wang M et al (2007) Nano Lett 7(11):3394. doi:https://doi.org/10.1021/nl0717715

    Article  CAS  Google Scholar 

  96. Dikin DA (2007) Nat Lett 448:457. doi:https://doi.org/10.1038/nature06016

    Article  CAS  Google Scholar 

  97. Jang BZ, Zhamu A, Song L (2006) US Patent Application No. 11/324,370 (4 Jan 06)

  98. Song L, Guo J, Zhamu A et al (2006) US Patent Application No. 11/328,880 (11 Jan 06)

  99. Sullivan MJ, Ladd DA (2006) US Patent 7,156,756 (2 Jan 2007) and No.7,025,696 (11 April 2006)

  100. Jang BZ (2007) US Patent 186(7):474

  101. Wang X, Zhi L, Mullen K (2008) Nano Lett 8(1):323. doi:https://doi.org/10.1021/nl072838r

    Article  CAS  Google Scholar 

  102. Watcharotone S, Dikin DA, Stankovich S et al (2007) Nano Lett 7(7):1888. doi:https://doi.org/10.1021/n1070477+S1530-6984(07)00477-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Z. Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, B.Z., Zhamu, A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43, 5092–5101 (2008). https://doi.org/10.1007/s10853-008-2755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2755-2

Keywords

Navigation