Skip to main content
Log in

A DFT study on the structural and electronic properties of small toxic gases on B- and Al- doped C20 fullerene

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural and electronic properties of semiconducting BC19 and AlC19 heterofullerenes as adsorbents for toxic small gas molecules (H2S and SO2) are determined by DFT. Structural parameters, energy gaps, natural population analysis, partial density of state, dipole moments, and vibrational frequencies were extracted. The adsorption process and sensitivity to the gases are increased by doping with B or Al. The results show that AlC19 is the most sensitive structure. The good sensing of AlC19 is related to high charge transfer upon gas adsorption. Adsorption of the H2S on the BC19 has negligible effects on the electronic properties, to be categorized as “harmless adsorption”. H2S is weakly adsorbed on BC19 and AlC19. The H2S and SO2 molecules act as electron donating and electron withdrawing molecules, respectively. Notably, the adsorption processes are highly exothermic. In general, BC19 is more reactive than C20 and AlC19 is the most reactive cage. This provides a theoretical basis to fabricate B- and Al-doped C20-based gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Richeson, Euler′s Gem: The polyhedron formula and the birth of topology, Princeton University Press (2012).

    Google Scholar 

  2. R. E. Smalley, H. Kroto, and J. Heath, Nature, 318, 162/163 (1985).

    Google Scholar 

  3. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano, B. V. Issendorff, Nature, 407, 60–63 (2000).

    Article  CAS  Google Scholar 

  4. Z. Wang, X. Ke, Z. Zhu, F. Zhu, M. Ruan, H. Chen, R. Huang, and L. Zheng, Phys. Lett. A, 280, 351–356 (2001).

    Article  CAS  Google Scholar 

  5. Z. Iqbal, Y. Zhang, H. Grebel, S. Vijayalakshmi, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, I. Spagnolatti, and R. Sharma, Eur. Phys. J. B, 31, 509–515 (2003).

    Article  CAS  Google Scholar 

  6. M. Sawtarie, M. Menon, and K. Subbaswamy, Phys. Rev. B, 49, 7739 (1994).

    Article  CAS  Google Scholar 

  7. Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, and D.-H. Wang, J. Cluster Sci., 22, 31–39 (2011).

    Article  CAS  Google Scholar 

  8. Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, and D.-H. Wang, J. Chem. Phys., 131, 24311 (2009).

    Article  Google Scholar 

  9. M. Saito and Y. Miyamoto, Phys. Rev. B, 65, 165434 (2002).

    Article  Google Scholar 

  10. I. Davydov, A. Podlivaev, and L. Openov, Phys. Solid State., 47, 778–784 (2005).

    Article  CAS  Google Scholar 

  11. M. Saito and Y. Miyamoto, Phys. Rev. Lett., 87, 035503 (2001).

    Article  CAS  Google Scholar 

  12. R. Kumar and A. Rani, Phys. B: Condens. Matter., 406, 1173–1177 (2011).

    Article  CAS  Google Scholar 

  13. E. Sackers, T. Oßwald, K. Weber, M. Keller, D. Hunkler, J. Wörth, L. Knothe, and H. Prinzbach, Chem. Europ. J., 12, 6242–6254 (2006).

    Article  CAS  Google Scholar 

  14. M. Kassaee, F. Buazar, and M. Koohi, J. Mol. Struct.: THEOCHEM, 940, 19–28 (2010).

    Article  CAS  Google Scholar 

  15. Z. Chen, T. Heine, H. Jiao, A. Hirsch, W. Thiel, and P. v. R. Schleyer, Chem. Europ. J., 10, 963–970 (2004).

    Article  CAS  Google Scholar 

  16. M. T. Baei, Heteroat. Chem., 24, 516–523 (2013).

    Article  CAS  Google Scholar 

  17. R. Ghiasi, M. Z. Fashami, and A. H. Hakimioun, Theor. Comput. Chem., 13, 1450023 (2014).

    Article  Google Scholar 

  18. Z. Ao, Q. Jiang, R. Zhang, T. Tan, and S. Li, J. Appl. Phys., 105, 074307 (2009).

    Article  Google Scholar 

  19. K. Azizi and M. Karimpanah, Appl. Surf. Sci., 285, 102–109 (2013).

    Article  CAS  Google Scholar 

  20. R. Wang, D. Zhang, W. Sun, Z. Han, and C. Liu, J. Mol. Struct.: THEOCHEM, 806, 93–97 (2007).

    Article  CAS  Google Scholar 

  21. Z. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett., 461, 276–279 (2008).

    Article  CAS  Google Scholar 

  22. J. Dai, J. Yuan, and P. Giannozzi, Appl. Phys. Lett., 95, 232103–232105 (2009).

    Article  Google Scholar 

  23. L. Bai and Z. Zhou, Carbon, 45, 2105–2110 (2007).

    Article  CAS  Google Scholar 

  24. J. Beheshtian, A. Ahmadi Peyghan, and Z. Bagheri, Phys. E: Low-dimensional Systems and Nanostructures, 44, 1963–1968 (2012).

    Article  CAS  Google Scholar 

  25. J. Beheshtian, M. T. Baei, A. A. Peyghan, and Z. Bagheri, J. Mol. Model., 18, 4745–4750 (2012).

    Article  CAS  Google Scholar 

  26. M. T. Baei, M. B. Tabar, and S. Hashemian, Adsorpt. Sci. Technol., 31, 469–476 (2013).

    Article  CAS  Google Scholar 

  27. X. Zhou, W. Q. Tian, and X.-L. Wang, Sens. Actuators, B, 151, 56–64 (2010).

    Article  CAS  Google Scholar 

  28. X. Zhang, Z. Dai, Q. Chen, and J. Tang, Phys. Scr., 89, 065803 (2014).

    Article  Google Scholar 

  29. A. A. Peyghan and H. Soleymanabadi, Mol. Phys., 112, 2737–2745 (2014).

    Article  CAS  Google Scholar 

  30. G. Guo, F. Wang, H. Sun, and D. Zhang, Internat. J. Quant. Chem., 108, 203–209 (2008).

    Article  CAS  Google Scholar 

  31. D. Grynko, J. Burlachenko, O. Kukla, I. Kruglenko, and O. Belyaev, Semicond. Phys., Quantum Electron. Optoelectron., 12, 287–289 (2009).

    CAS  Google Scholar 

  32. C. Tian, Z. Wang, M. Jin, W. Zhao, Y. Meng, F. Wang, W. Feng, H. Liu, D. Ding, and D. Wu, Chem. Phys. Lett., 511, 393–398 (2011).

    Article  CAS  Google Scholar 

  33. K. Azizi, K. Salabat, and A. Seif, Appl. Surface Sci., 309, 54–61 (2014).

    Article  CAS  Google Scholar 

  34. M. Böyükata and Z. B. Güvenç, J. Hydrogen Energy, 36, 8392–8402 (2011).

    Article  Google Scholar 

  35. Y. Zhang, Y. Zhang, D. Zhang, and C. Liu, J. Phys. Chem. B, 110, 4671–4674 (2006).

    Article  CAS  Google Scholar 

  36. I. P. O. C. Change, B. Metz, L. Kuijpers, S. Solomon, S. O. Anderson, O. R. Davidson, J. Pons, D. De Jager, T. Kestin, and M. Manning, Safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons (2013).

    Google Scholar 

  37. J. G. Speight, The chemistry and technology of petroleum, CRC press (2014).

    Google Scholar 

  38. Y. Jia, G. Zhuang, and J. Wang, J. Phys. D: Appl. Phys., 45, 065305 (2012).

    Article  Google Scholar 

  39. M. P. Hyman, B. T. Loveless, and J. W. Medlin, Surf. Sci., 601, 5382–5393 (2007).

    Article  CAS  Google Scholar 

  40. P. N. Samanta and K. K. Das, Chem. Phys. Lett., 577, 107–113 (2013).

    Article  CAS  Google Scholar 

  41. Y. Guo, Y. Li, T. Zhu, M. Ye, and X. Wang, Adsorption, 19, 1109–1116 (2013).

    Article  CAS  Google Scholar 

  42. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, and S. Su, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  43. D. Saha and S. Deng, Langmuir, 27, 6780–6786 (2011).

    Article  CAS  Google Scholar 

  44. D.-L. Wang, H.-L. Xu, Z.-M. Su, and D.-Y. Hou, Comput. Theor. Chem., 978, 166–171 (2011).

    Article  CAS  Google Scholar 

  45. B. Akdim, T. Kar, X. Duan, and R. Pachter, Chem. Phys. Lett., 445, 281–287 (2007).

    Article  CAS  Google Scholar 

  46. S. F. Boys and F. D. Bernardi, Mol. Phys., 19, 553–566 (1970).

    Article  CAS  Google Scholar 

  47. R. G. Pearson, Inorg. Chem., 27, 734–740 (1988).

    Article  CAS  Google Scholar 

  48. T. Koopmans, Physica., 1, 104–113 (1933).

    Article  CAS  Google Scholar 

  49. S. Sokolova, A. Lüchow, and J. B. Anderson, Chem. Phys. Lett., 323, 229–233 (2000).

    Article  CAS  Google Scholar 

  50. Z. Wang, P. Day, and R. Pachter, Chem. Phys. Lett., 248, 121–126 (1996).

    Article  CAS  Google Scholar 

  51. J. C. Grossman, L. Mitas, and K. Raghavachar, Phys. Rev. Lett., 75, 3870 (1995).

    Article  CAS  Google Scholar 

  52. C. S. Yeung, L. V. Liu, and Y. A. Wang, J. Phys. Chem. C, 112, 7401–7411 (2008).

    Article  CAS  Google Scholar 

  53. H. Bai, W. Ji, X. Liu, L. Wang, N. Yuan, and Y. Ji, J. Chem., 2013, 571709 (2013).

    Google Scholar 

  54. J.-I. Aihara, Theor. Chem. Acc., 102, 134–138 (1999).

    Article  CAS  Google Scholar 

  55. B. Gao, J.-X. Zhao, Q.-H. Cai, X.-G. Wang, and X.-Z. Wang, J. Phys. Chem. A, 115, 9969–9976 (2011).

    Article  CAS  Google Scholar 

  56. D. Jiang and E. A. Carter, Surf. Sci., 583, 60–68 (2005).

    Article  CAS  Google Scholar 

  57. A. A. Peyghan and H. Soleymanabadi, Mol. Phys., 112, 2737–2745 (2014).

    Article  CAS  Google Scholar 

  58. S. F. Rastegar, N. L. Hadipour, and H. Soleymanabadi, J. Mol. Model., 20, 1–6 (2014).

    Article  CAS  Google Scholar 

  59. W. Li, J.-J. Ma, P. Liu, Z.-L. Pan, and Q.-Y. He, Appl. Surf. Sci., 335, 17–22 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Molani.

Additional information

Original Russian Text © 2017 F. Molani, M. Askari.

The text was submitted by the authors in English.

Zhurnal Strukturnoi Khimii, Vol. 58, No. 4, pp. 692–701, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molani, F., Askari, M. A DFT study on the structural and electronic properties of small toxic gases on B- and Al- doped C20 fullerene. J Struct Chem 58, 657–666 (2017). https://doi.org/10.1134/S0022476617040035

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617040035

Keywords

Navigation