Skip to main content
Log in

The influence of the negative hyperconjugation is relevant for the analysis of the π-π* conjugation with the mono-substitution and di-substitution of H2C= by O= and/or HN= in trans-buta-1,3-diene?

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have studied prop-2-en-1-imine (1), prop-2-enal (2), ethane-1,2-diimine (3), ethanedial (4), and 2-iminoacetaldehyde (5) to investigate the influence of the negative hyperconjugation in π-π* interaction with the substitution of =CH2 by =NH and/or =O in trans-buta-1,3-diene (6). The analyzes of the π-π* interaction performed from evaluation of the π molecular orbital diagrams and electron localization function method demonstrated, that compared to 6, the substituted compounds 1-5 presented lower electron conjugation, especially in the structures bearing =O. The geometric parameters, natural bond orders, and topological analysis realized by quantum theory of atoms in molecules method indicated a predominant C-C and C=C character for the simple and double C-C bonds in the substituted compounds, 1-5, as compared to 6. Compound 4 had the highest enthalpy of formation, which reflected the lowest π-π* interaction, maintained by the two =O conjugated groups. The natural bond orbital (NBO) and natural resonance theory (NRT) methods revealed that the π-π* electron delocalization in substituted compounds, 1-5, is lower than in 6 from, firstly, of the less favorable interactions: π(X=C) ➔ π*(C=C) and π(X=C) ➔ π*(C=X), despite of the larger π(C=C) ➔ π*(C=X) conjugation, with X = N and/or O, of 1-5 than π(C=C) ➔ π*(C=C) of 6. But, most importantly, the weight of the interaction: nπ(O) ➔ σ*(C-C), was determined from NBO and NRT methods as proportional to the π-π* conjugation and thus demonstrating be decisive to establish the level of π electronic delocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farkaš P, Bystrický S (2010) Chemical conjugation of biomacromolecules: a mini-review. Chem Pap. https://doi.org/10.2478/s11696-010-0057-z

  2. Mucsi Z, Chass AG, Viskolcz B, Csizmadia GI (2008) Quantitative scale for the extent of conjugation of carbonyl groups: “Carbonylicity” percentage as a chemical driving force. J Phys Chem A. https://doi.org/10.1021/jp8048586

  3. Prasuhn DE, Feltz A, Blanco-Canosa JB, Susumu K, Stewart MH, Mei BC, Yakovlev AV, Loukou C, Mallet MJ, Oheim M, Dawson PE, Medintz IL (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano. https://doi.org/10.1021/nn1016132

  4. Algar RW, Massey M, Krull JU (2009) The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trac-Trend Anal Chem. https://doi.org/10.1016/j.trac.2008.11.012

  5. Wei Y, Shi M (2010) Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita-Baylis-Hillman and related reactions. Acc Chem Res. https://doi.org/10.1021/ar900271g

  6. Helmchen G, Pfaltz A (2000) Phosphinooxazolines—a new class of versatile, modular P,N-ligands for asymmetric catalysis. Acc Chem Res. https://doi.org/10.1021/ar9900865

  7. Samori S, Tojo S, Fujitsuka M, Spitler EL, Haley MM, Majima T (2008) Fine-tuning of radiolysis induced emission by variable substitution of donor-/acceptor-substituted tetrakis(arylethynyl)benzenes. J Org Chem. https://doi.org/10.1021/jo8001535

  8. Schleyer PV (2005) Introduction: delocalization—pi and sigma. Chem Rev. https://doi.org/10.1021/cr030095y

  9. Martín N, Scott LT (2015) Challenges in aromaticity: 150 years after Kekulé’s benzene. Chem Soc Rev. https://doi.org/10.1039/C5CS90085A

  10. Ponikvar-Svet M, Zeiger ND, Liebman FJ (2015) Interplay of thermochemistry and structural chemistry, the journal (volume 25, 2014, issues 1–2) and the discipline. Struct Chem. https://doi.org/10.1007/s11224-015-0572-1

  11. Orenha RP, Vessecchi R, Galembeck SE (2015) The resonance of cation and anion radicals with multiple conjugated bonds. Struct Chem. https://doi.org/10.1007/s11224-014-0490-7

  12. Chaitanya KG, Thomas A, Sinu RC, Francis B, Subhashchandran PK, Ramakrishna K, Bhanuprakash K (2008) Insight into the electron delocalization in phenylacetylenes and phenylvinylenes: an NBO analysis. Indian J Chem A 47:1171–1180

    Google Scholar 

  13. Fernández I, Frenking G (2006) Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. Chem Eur J. https://doi.org/10.1002/chem.200501405

  14. Wu W, Luo Y, Songa L, Shaik S (2001) VBDFT(s)-a semi-empirical valence bond method: application to linear polyenes containing oxygen and nitrogen heteroatoms. Phys Chem Chem Phys. https://doi.org/10.1039/b107505e

  15. Rathna A, Chandrasekhar J (1991) The influence of lone-pair repulsions on C-C bond lengths—a critical-evaluation of the experimental and theoretical evidence. J Chem Soc Perkin Trans 2. https://doi.org/10.1039/p29910001661

  16. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett. https://doi.org/10.1016/0009-2614(88)85250-3

  17. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I The atoms boron through neon and hydrogen. J Chem Phys. https://doi.org/10.1063/1.456153

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Vol Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  19. Cortes-Guzman F, Bader RFW (2005) Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2004.08.022

  20. AIMAll (Version 16.10.31), Keith TA (2016) TK gristmill software, Overland Park KS, USA (aim.tkgristmill.com)

  21. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. https://doi.org/10.1002/jcc.22885

  22. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A. https://doi.org/10.1103/PhysRevA.38.3098

  23. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. https://doi.org/10.1103/PhysRevB.33.8822

  24. Landis CR, Weinhold F (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding1st edn. New York, Wiley

    Google Scholar 

  25. Glendening ED, Weinhold F (1998) Natural resonance theory: I. General formalism. J Comput Chem. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M

  26. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute. University of Wisconsin, Madison

    Google Scholar 

  27. Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc. https://doi.org/10.1021/ja805843n

  28. Vessecchi R, Galembeck SE (2008) Evaluation of the enthalpy of formation, proton affinity, and gas-phase basicity of gamma-butyrolactone and 2-pyrrolidinone by isodesmic reactions. J Phys Chem A. https://doi.org/10.1021/jp800427q

  29. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys. https://doi.org/10.1063/1.464913

  30. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and twelve other functionals. Theor Chem Accounts. https://doi.org/10.1007/s00214-007-0310-x

  31. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aid Mol Des. https://doi.org/10.1023/A:1008193805436

  32. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc, Shawnee Mission, KS

    Google Scholar 

  33. Li Z, Wan H, Shi Y, Ouyang P (2004) Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J Chem Inf Comput Sci. https://doi.org/10.1021/ci049794h

  34. Jmol: An open-source Java viewer for chemical structures in 3D. http://jmol.org/. Accessed 02 Feb 2016

  35. Natural Bond Orbitals (NBO) in Organic Chemistry. http://chemgplus.blogspot.com.br/2013/08/jmol-nbo-visualization-helper.html. Accessed 02 Feb 2016

  36. Albright TA, Burdett JK, Whangbo MH (1985) Orbital interactions in chemistry. Wiley, New York

    Google Scholar 

  37. Matito E, Solà M (2009) The role of electronic delocalization in transition metal complexes from the electron localization function and the quantum theory of atoms in molecules viewpoints. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2008.10.003

  38. Fradera X, Poater J, Simon S, Duran M, Solà M (2002) Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theor Chem Accounts. https://doi.org/10.1007/s00214-002-0375-5

  39. Glendening ED, Weinhold F (1998) Natural resonance theory. II Natural bond order and valency. J Comput Chem. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U

  40. Bader RFW (1985) Atoms in molecules. Acc Chem Res. https://doi.org/10.1021/ar00109a003

  41. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  42. Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2003) Valence charge concentrations, electron delocalization and β–agostic bonding in d0 metal alkyl complexes. Chem-Eur J. https://doi.org/10.1002/chem.200304909

  43. Cramer CJ (2004) Essentials of computational chemistry: Theories and models. John Wiley & Sons, Inc, Chichester 

  44. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 18, October 2016, Editor: Russell D. Johnson III.http://cccbdb.nist.gov/. Accessed 23 Mar 2017

  45. Prosen EJ, Maron FW, Rossini FD (1951) Heats of combustion, formation, and insomerization of ten C4 hydrocarbons. J Res NBS 46:106-112

  46. Chase Jr MW (1998) NIST-JANAF thermochemical tables. American Chemical Society, Washington

  47. Manion JA (2002) Evaluated enthalpies of formation of the stable closed shell C1 and C2 chlorinated hydrocarbons. J Phys Chem Ref Data. https://doi.org/10.1063/1.1420703

  48. Peerboom RAL, Ingemann S, Nibbering NMM, Liebman JF (1990) Proton affinities and heats of formation of the imines CH2=NH, CH2=NMe and PhCH=NH. J Chem Soc Perkin Trans 2. https://doi.org/10.1039/P29900001825

  49. Rauk A (1994) Orbital interactions of organic chemistry. John Wiley and Sons, Inc, New York

  50. Glendening ED, Badenhoop JK, Weinhold F (1998) Natural resonance theory. III Chemical applications. J Comput Chem. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<628::AID-JCC5>3.0.CO;2-T

Download references

Acknowledgments

The authors thank the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/Programa de Apoio à Pós-Graduação (PROAP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grants 304447/2010-2 and 442384/2014-9), and São Paulo Research Foundation (FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo) (Grants 2008/02677-0, 2014/23604-1 and 2014/50265-3) for financial support. S.E.G. thanks CNPq for research fellowships (Grants 304393/2013-4 and 308254/2016-3). R.P.O. thanks FAPESP for undergraduate and graduate fellowships (grants 2009/08712-4, 2011/20351-7 and 2015/15176-2). We also acknowledge Ali Faez Taha for technical assistance and Cynthia M. C. Prado Manso for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato P. Orenha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orenha, R.P., Vessecchi, R. & Galembeck, S.E. The influence of the negative hyperconjugation is relevant for the analysis of the π-π* conjugation with the mono-substitution and di-substitution of H2C= by O= and/or HN= in trans-buta-1,3-diene?. Struct Chem 29, 847–857 (2018). https://doi.org/10.1007/s11224-017-1070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1070-4

Keywords

Navigation