Skip to main content
Log in

A feasibility study on obtaining d-orbital populations from aspherical-atom refinements on three spin crossover compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Although compounds undergoing thermally induced spin crossover have been widely studied, their experimental d-orbital populations from single-crystal X-ray diffraction have rarely been reported. Three pairs of structures of iron/manganese coordination compounds were re-evaluated. Least-squares refinements relied on aspherical scattering factors obtained from molecular quantum-mechanical DFT single-point computations of the respective solid-state conformation, initiated by accurate starting structures from preliminary invariom refinements of the ligand environment. Further evaluation concerned d-orbital populations of metal ions from (a) single-point computations projected onto the Hansen-Coppens multipole model and from (b) experimental refinements of the metal atoms only. The latter were successful for good-quality data, independent of temperature, and provided only one spin state was exclusively present in the crystal. Crystals that underwent light-induced excited spin state trapping were not showing the expected d-orbital populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. LIESST stands for light-induced exited spin state trapping.

  2. In the form of Fourier-Bessel transformed Hansen-Coppens multipole parameters.

  3. ADPs here stands for atomic displacement parameters.

  4. It should be emphasized that for data of conventional resolution (i.e., fulfilling resolution requirements for the Acta Crystallographica C and E journals), it is required to keep ADPs and possibly coordinates fixed from preliminary refinement with predicted scattering factors to suppress parameter correlation in the least-squares procedure.

  5. The original authors denote their data sets HS (LIESST), HS,LS (50%), and LS (reverse LIESST), respectively.

  6. The other ligands were generated to visualize the complete coordination environment.

  7. The corresponding author can provide positional parameters, experimental and calculated scattering factors, projected multipole parameters, and results of the quantum chemical calculations upon request.

  8. De-convolution is facilitated, since both sets of possibly correlated parameters of ADPs and multipoles are not refined simultaneously. A more thorough discussion is provided in [35].

  9. Four scattering factor databases currently exist: the ‘supramolecular-synthon based fragments approach’ SBFA [48], the ‘experimental library multipolar atom model’ ELMAM2 [49, 50] (both based on high-resolution experiments), the ‘generalized invariom database’ GID [33, 51], and the ‘University at Buffalo Databank’ UBDB2011 [52, 53] (the latter two based on theoretical DFT computations). All four rely on the established Hansen-Coppens multipole model [25] and can successfully be used to improve conventional XRD structures.

  10. The B3LYP functional and the D95 + +(3df,3pd) basis were used in the 2013 release of the database and for invariom modeling here. We can now also provide the M06/def2TZVP functional/basis set combination.

  11. Model compounds for this purpose were the same that have been used to derive the respective non-spherical hydrogen scattering factors [33].

  12. I.e. all scattering factors were now taken from the local ‘whole-molecule’ database, although for the ligand environment, it would not make a significant difference to keep the values from the invariom database.

  13. Note that the number of electrons of the metal atom are then also constrained due to the overall charge constraint.

  14. The artificial \(P\bar {1}\) unit cell with a = b = c = 30 Å [58] could therefore be used for FT with the program TONTO [59] throughout.

  15. The situation is more complicated for disordered structures.

  16. Bond distances showed that our result certainly was obtained for the supposed HS,HS data set and not the abovementioned third dataset of a HS,LS state.

  17. Here, the z-axis was defined by choosing the two nitrogen atoms of the phenanthroline ring as x- and y-axes. Orthogonalization then leads to the z-axis pointing to the thiocyanato ligand.

References

  1. Cambi L, Szegö L (1931) über die magnetische susceptibilität der komplexen verbindungen. Ber Dtsch Chem Ges 64:2591–2598

    Article  Google Scholar 

  2. Gütlich P, Hauser A, Spiering H (1994) Thermal and optical switching of iron(II) complexes. Angew Chem Int Ed 33:2024–2054

    Article  Google Scholar 

  3. Gütlich P, Goodwin HA (2004) Spin crossover—an overall perspective. In: Gütlich P, Goodwin H A (eds) Spin crossover in transition metal compounds I, vol 233 of topics in current chemistry. Springer, Berlin, pp 1–47

    Google Scholar 

  4. Murray KS (2013) The development of spin-crossover research. In: Halcrow M A (ed) Spin-crossover materials—properties and applications. Wiley, Chichester, pp 1–43

    Google Scholar 

  5. Kahn O, Martinez CJ (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279(5347): 44–48

    Article  CAS  Google Scholar 

  6. Decurtins S, Gutlich P, Hasselbach KM, Hauser A, Spiering H (1985) Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study. Inorg Chem 24 (14):2174–2178

    Article  CAS  Google Scholar 

  7. Hauser A (1986) Reversibility of light-induced excited spin state trapping in the fe(ptz)6(bf4)2 and the zn1x fe x (ptz)6(bf4)2 spin-crossover systems. Chem Phys Lett 124:543–548

    Article  CAS  Google Scholar 

  8. Niel V, Thompson AL, Muñoz MC, Galet A, Goeta AE, Real JA (2003) Crystalline-state reaction with allosteric effect in spin-crossover, interpenetrated networks with magnetic and optical bistability. Angew Chem 115:3890–3893

    Article  Google Scholar 

  9. Sciortino NF, Scherl-Gruenwald KR, Chastanet G, Halder GJ, Chapman KW, Létard J-F, Kepert CJ (2012) Hysteretic three-step spin crossover in a thermo- and photochromic 3D pillared Hofmann-type metal-organic framework. Angew Chem 124:10301–10305

    Article  Google Scholar 

  10. Clements JE, Price JR, Neville SM, Kepert CJ (2014) Pertubation of spin crossover behavior by covalent post-synthetic modification of a porous metal-organic framework. Angew Chem Int Ed 126:10328–10332

    Article  Google Scholar 

  11. Larionova J, Salmon L, Guari Y, Tokarev A, Molvinger K, Molnár G, Bousseksou A (2008) Towards the ultimate size limit of the memory effect in spin-crossover solids. Angew Chem Int Ed 47:8236–8240

    Article  CAS  Google Scholar 

  12. Galán-Mascarós J R, Coronado E, Monrabal-Capilla M, Forment-Aliagaand A, Pinilla-Cienfuegos E, Ceolin M (2010) Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. Inorg Chem 49 (6):5706–5714

    Article  Google Scholar 

  13. Boldog I, Gaspar AB, Martínez V, Pardo-Ibañez P, Ksenofontov V, Bhattacharjee A, Gütlich P, Real JA (2008) Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. Angew Chem Int Ed 47:6433–6437

    Article  CAS  Google Scholar 

  14. Bousseksou A, Molnar G, Salmon L, Nicolazzi W (2011) Molecular spin crossover phenomenon: recent achievements and prospects. Chem Soc Rev 40:3313–3335

    Article  CAS  Google Scholar 

  15. Giménez-Marqués M, García-Sanz de Larrea ML, Coronado E (2015) Unravelling the chemical design of spin-crossover nanoparticles based on iron(ii)–triazole coordination polymers: towards a control of the spin transition. J Mater Chem C 3:7946–7953

    Article  Google Scholar 

  16. Sy M, Garrot D, Slimani A, Páez-Espejo M, Varret F, Boukheddaden K (2016) Reversible control by light of the high-spin low-spin elastic interface inside the bistable region of a robust spin-transition single crystal. Angew Chem 126:1787–1791

    Article  Google Scholar 

  17. Garcia Y, Paulsen H, Schünemann V, Trautwein AX, Wolny JA (2007) Estimate of the vibrational contribution to the entropy change associated with the spin transition in the d 4 systems [mnIII(pyrol)3tren] and [crII(depe)2 i 2]. Phys Chem Chem Phys 9:1194–1201

    Article  CAS  Google Scholar 

  18. Baker WA, Bobonich HM (1964) Magnetic properties of some high-spin complexes of iron(ii). Inorg Chem 3(8):1184–1188

    Article  CAS  Google Scholar 

  19. Chandrasekhar K, Bürgi H-B (1984) Dynamic processes in crystals examined through difference vibrational parameters δ u: the low-spin-high-spin transition in tris(dithiocarbamato)iron(iii) complexes. Acta Cryst B 40:387–397

    Article  Google Scholar 

  20. Marchivie M, Guionneau P, Howard JAK, Chastanet G, Létard J-F, Goeta AE, Chasseau D (2002) Structural characterization of a photoinduced molecular switch. J Am Chem Soc 124:194–195

    Article  CAS  Google Scholar 

  21. Chernyshov D, Hostettler M, Törnroos KW, Bürgi H-B (2003) Ordering phenomena and phase transitions in a spin-crossover compound—uncovering the nature of the intermediate phase of [fe(2-pic)3]cl2 ⋅etoh. Angew Chem Int Ed 42:3825–3830

    Article  CAS  Google Scholar 

  22. Legrand V, Pillet S, Souhassou M, Lugan N, Lecomte C (2006) Extension of the experimental electron density analysis to metastable states: a case example of the spin crossover complex fe(btr)2(ncs)22 ⋅h 2o. J Am Chem Soc 128:13921–13931

    Article  CAS  Google Scholar 

  23. Guionneau P (2014) Crystallography and spin-crossover. A view of breathing materials. Dalton Trans 43:382–393

    Article  CAS  Google Scholar 

  24. Stewart RF (1976) Electron population analysis with rigid pseudoatoms. Acta Cryst A 32:565–574

    Article  Google Scholar 

  25. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Cryst A 34:909–921

    Article  Google Scholar 

  26. Holladay A, Leung P, Coppens P (1983) Generalized relations between d-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray diffraction data. Acta Cryst A 39:377–387

    Article  Google Scholar 

  27. Tsirelson V, Stash A (2004) On functions and quantities derived from the experimental electron density. Acta Cryst A 60:418–426

    Article  Google Scholar 

  28. Legrand V, Pillet S, Weber H-P, Souhassou M, Létard J-F, Guionneau P, Lecomte C (2007) On the precision and accuracy of structural analysis of light-induced metastable states. J Appl Cryst 40:1076–1088

    Article  CAS  Google Scholar 

  29. Pillet S, Legrand V, Weber H-P, Souhassou M, Létard J-F, Guionneau P, Lecomte C (2008) Out-of-equilibrium charge density distribution of spin crossover complexes from steady-state photocrystallographic measurements: experimental methodology and results. Z Kristallogr 223:235–249

    Article  CAS  Google Scholar 

  30. Griffin M, Shakespeare S, Shepherd HJ, Harding CJ, Létard J-F, Desplanches C, Goeta AE, Howard JAK, Powell AK, Mereacre V, Garcia Y, Naik AD, Müller-Bunz H, Morgan GG (2011) A symmetry-breaking spin-state transition in iron(III). Angew Chem 123:926–930

    Article  Google Scholar 

  31. Murnaghan KD, Carbonera C, Toupet L, Griffin M, Dîrtu MM, Desplanches C, Garcia Y, Collet E, Létard J-F, Morgan GG (2014) Spin-state ordering on one sub-lattice of a mononuclear iron(III) spin crossover complex exhibiting LIESST and TIESST. Chem Eur J 19:5613–5618

    Article  Google Scholar 

  32. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Cryst A 32:239–244

    Article  Google Scholar 

  33. Dittrich B, Hübschle CB, Pröpper K, Dietrich F, Stolper T, Holstein JJ (2013) The generalized invariom database (GID). Acta Cryst B 69:91–104

    Article  CAS  Google Scholar 

  34. Dittrich B, Wandtke CM, Meents A, Pröpper K, Mondal KC, Amin N, Singh A, Roesky HW, Sidhu N (2015) Aspherical-atom modeling of coordination compounds by single-crystal x-ray diffraction allows the correct metal atom to be identified. ChemPhysChem 16:412–419

    Article  CAS  Google Scholar 

  35. Dittrich B, Hübschle CB, Holstein JJ, Fabbiani FPA (2009) Towards extracting the charge density from normal-resolution data. J Appl Cryst 42:1110–1121

    Article  CAS  Google Scholar 

  36. Dittrich B, Weber M, Kalinowski R, Grabowsky S, Hübschle CB, Luger P (2009) How to easily replace the independent atom model—the example of Bergenin, a potential anti-HIV agent of traditional asian medicine. Acta Cryst B 65:749–756

    Article  CAS  Google Scholar 

  37. Hübschle CB, Dittrich B (2011) Molecoolqt—a molecule viewer for charge density related science. J Appl Cryst 44:238–240

    Article  Google Scholar 

  38. Kusz J, Spiering H, Gütlich P (2001) X-ray structure study of the light-induced metastable states of the spin-crossover compound [fe(mtz)6](bf4)2. J Appl Cryst 34:229–238

    Article  CAS  Google Scholar 

  39. Gildea B, Harris MM, Gavin LC, Murray CA, Ortin Y, Müller-Bunz H, Harding J, Lan Y, Powell (2014) Substituent effects on spin state in a series of mononuclear manganese(III) complexes with hexadentate schiff-base ligands. Inorg Chem 53(12):6022–6033

    Article  CAS  Google Scholar 

  40. Reiher M (2002) Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals. Inorg Chem 41:6928–6935

    Article  CAS  Google Scholar 

  41. Jensen KP, Cirera J (2009) Accurate computed enthalpies of spin crossover in iron and cobalt complexes. J Phys Chem A 113:10033–10039

    Article  CAS  Google Scholar 

  42. Koritsánszky T, Volkov A, Coppens P (2002) Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism. Acta Cryst A 58:464–472

    Article  Google Scholar 

  43. Jayatilaka D (1994) Fourier transforms of property densities with gaussian functions. Chem Phys Lett 230:228–230

    Article  CAS  Google Scholar 

  44. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

    Article  Google Scholar 

  45. Hübschle CB, Sheldrick GM, Dittrich B (2011) SHELXLE: a QT graphical user interface for SHELXL. J Appl Cryst 44:1281–1284

    Article  Google Scholar 

  46. Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson P, Richter T, Koritsánszky T (2006) XD2006 – a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental or theoretical structure factors. University at Buffalo, New York

  47. Hübschle CB, Luger P, Dittrich B (2007) Automation of invariom and of experimental charge density modelling of organic molecules with the preprocessor program invariomtool. J Appl Cryst 40:623–627

    Article  Google Scholar 

  48. Hathwar VR, Thakur TS, Guru Row TN , Desiraju GR (2011) Transferability of multipole charge density parameters for supramolecular synthons: a new tool for quantitative crystal engineering. Cryst Growth Des 11(2):616–623

    Article  CAS  Google Scholar 

  49. Zarychta B, Pichon-Pesme V, Guillot B, Lecomte C, Jelsch C (2007) On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Cryst A 63:108–125

    Article  CAS  Google Scholar 

  50. Domagala S, Fournier B, Liebschner D, Guillot B, Jelsch C (2012) An improved experimental databank of transferable multipolar atom models—ELMAM2. Construction details and applications. Acta Cryst A 68:337–351

    Article  CAS  Google Scholar 

  51. Dittrich B, Hübschle CB, Luger P, Spackman MA (2006) Introduction and validation of an invariom database for amino acid, peptide and protein molecules. Acta Cryst D 62:1325–1335

    Article  CAS  Google Scholar 

  52. Dominiak PM, Volkov A, Li X, Messerschmidt M, Coppens P (2007) A theoretical databank of transferable aspherical atoms and its application to electrostatic interaction energy calculations of macromolecules. J Chem Theory Comput 2:232–247

    Article  Google Scholar 

  53. Jarzembska KN, Dominiak PM (2012) New version of the theoretical databank of transferable aspherical pseudoatoms, ubdb2011—towards nucleic acid modelling. Acta Cryst A 68:139–147

    Article  CAS  Google Scholar 

  54. Dittrich B, Koritsánszky T, Luger P (2004) A simple approach to nonspherical electron densities by using invarioms. Angew Chem Int Ed 43:2718–2721

    Article  CAS  Google Scholar 

  55. Nelyubina YV, Lyssenko KA (2015) Probing ionic crystals by the invariom approach: an electron density study of guanidinium chloride and carbonate. Chem Eur J 21:9733–9741

    Article  CAS  Google Scholar 

  56. Macchi P, Coppens P (2001) Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to I. Acta Cryst A 57:656–662

    Article  CAS  Google Scholar 

  57. Thangavel A, Wieliczko M, Scarborough C, Dittrich B, Bacsa J (2015) An investigation of the electron density of a Jahn–Teller-distorted CrII cation: the crystal structure and charge density of hexakis(acetonitrile- κ n)-chromium(II) bis(tetraphenylborate) acetonitrile disolvate[cr(c2 h 3n)6](c24 h 20b)2 ⋅2c2 h 3n. Acta Cryst C 71:936–943

    Article  CAS  Google Scholar 

  58. Dittrich B, Hübschle CB, Messerschmidt M, Kalinowski R, Girnt D, Luger P (2005) The invariom model and its application: refinement of d,l-serine at different temperatures and resolution. Acta Cryst A 61:314–320

    Article  CAS  Google Scholar 

  59. Jayatilaka D, Grimwood DJ (2003) Tonto: a fortran based object-oriented system for quantum chemistry and crystallography. Comput Sci - ICCS 2003 2660:142–151

    Article  Google Scholar 

  60. Johnson CK (1969) Addition of higher cumulants to the crystallographic structure-factor equation: a generalized treatment for thermal-motion effects. Acta Cryst A 25:187–194

    Article  CAS  Google Scholar 

  61. Kuhs WF (1992) Generalized atomic displacements in crystallographic structure analysis. Acta Cryst A 48:80–98

    Article  Google Scholar 

  62. Zhurov VV, Zhurova EA, Pinkerton AA (2008) Optimization and evaluation of data quality for charge density studies. J Appl Cryst 41:340–349

    Article  CAS  Google Scholar 

  63. Rosenfield RE, Trueblood K, Dunitz JD (1978) A test for rigid-body vibrations, based on a generalization of Hirshfeld’s’ rigid-bond’ postulate. Acta Cryst A 34:828–829

    Article  Google Scholar 

  64. Jelsch C, Pichon-Pesme V, Lecomte C, Aubry A (1998) Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures. Acta Cryst D 54:1306–1318

    Article  CAS  Google Scholar 

  65. Dittrich B, Warren J, McKinnon JJ (2008) Improvement of anisotropic displacement parameters from invariom-model refinements for three l-hydroxylysine structures. Acta Cryst B 64:750–759

    Article  CAS  Google Scholar 

  66. Dittrich B, Munshi P, Spackman MA (2007) Re-determination and invariom model refinement of l-ornithine hydrochloride. Acta Cryst B 63:505–509

    Article  CAS  Google Scholar 

  67. Volkov A, Messerschmidt M, Coppens P (2007) Improving the scattering factor formalism in protein refinement: application of the university at buffalo aspherical-atom databank to polypeptide structures. Acta Cryst D 63:160–170

    Article  CAS  Google Scholar 

  68. Cole JM (2008) Photocrystallography. Acta Cryst A 64:259–271

    Article  CAS  Google Scholar 

  69. Checińska L, Morgenroth W, Paulmann C, Jayatilaka D, Dittrich B (2013) A comparison of electron density from Hirshfeld-atom refinement, X-ray wavefunction refinement and multipole refinement on three urea derivatives. CrystEngComm 15:2084– 2090

    Article  Google Scholar 

  70. Clementi E, Roetti C (1974) Roothaan-Hartree-Fock atomic wavefunctions. At Data Nucl Data Tables 14:177–478

    Article  CAS  Google Scholar 

  71. Michael JR, Koritsánszky T (2017) On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: a direct-space computational study. J Chem Phys 204105:147

    Google Scholar 

  72. Klokishner SI, Roman MA, Reu OS (2011) A model of spin crossover in manganese(III) compounds: effects of intra- and intercenter interactions. Inorg Chem 50:11394–11402

    Article  CAS  Google Scholar 

  73. Seiler P, Dunitz JD (1979) The structure of triclinic ferrocene at 101, 123 and 148 k. Acta Cryst B 35:2020–2032

    Article  Google Scholar 

Download references

Acknowledgments

Funding within DFG project DI 921/6-1 is gratefully acknowledged. The authors thank Prof. G. Morgan for sharing their multi-temperature X-ray data for compound 2 and the referees for helpful suggestions and corrections as well as Dr. F.P.A. Fabbiani for improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Dittrich.

Ethics declarations

The authors are not aware of any conflicts of interests regarding this work. Our research does not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dittrich, B., Ruf, E. & Meller, T. A feasibility study on obtaining d-orbital populations from aspherical-atom refinements on three spin crossover compounds. Struct Chem 28, 1333–1342 (2017). https://doi.org/10.1007/s11224-017-1012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1012-1

Keywords

Navigation