We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Analysis of 2D Maps Based on Similarity in DFT-Calculated vs Experimental 13C–15N Spin Couplings for a Representative Sample of Conformationally Rigid and Structurally Fixed Nitrogen-Containing Organic Compounds

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work, we carried out an extended verification of the 13C–15N spin–spin coupling constants as a new structural indicator of nitrogen-containing organic compounds. In this regard, we performed a quantum-chemical calculation (B3LYP with basis set 6-311++G(2df,2p)) for a representative sample of 193 spin–spin couplings for the currently known literature experimental data on them in the conformationally rigid and structurally fixed compounds. Comparison of theoretical couplings with experimental ones shows a statistically significant good to excellent agreement. A parallel analysis of the variability of the calculated values of 13C–15N spin bonds with the variability of experimental data within groups of related compounds turned out to be practically useful. The approach developed can be used to quite reasonably determine the signs of spin–spin coupling constants 13C–15N. It can also provide important additional information for assigning 13C peaks in cases where this cannot be done using standard NMR spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.D.W. Claridge, High-resolution NMR techniques in organic chemistry, 3rd edn. (Elsevier Science, Oxford, 2016)

    Google Scholar 

  2. D.A. Cheshkov, D.O. Synitsyn, K.F. Sheberstov, V.A. Chertkov, J. Magn. Reson. 272, 10 (2016)

    Article  ADS  Google Scholar 

  3. V.A. Chertkov, D.A. Cheshkov, D.O. Sinitsyn, eMagRes 6, 359 (2017)

    Article  Google Scholar 

  4. H. Gunther, N.M.R. Spectroscopy, Basic principles, concepts and applications in chemistry, 3rd edn. (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  5. R.J. Abraham, M. Mobli, Modelling 1H NMR spectra of organic compounds theory, applications and NMR prediction software (Wiley, Chichester, 2008)

    Book  Google Scholar 

  6. M.B. Kaupp, V.G. Malkin, Calculation of NMR and EPR parameter. Theory and applications (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  7. J.B. Foresman, A. Frisch, Exploring chemistry with electronic structure methods (Gaussian Inc., Wallingford, 2015)

    Google Scholar 

  8. L.B. Krivdin, R.H. Contreras, Annu. Rep. NMR Spectrosc. 61, 133 (2007)

    Article  Google Scholar 

  9. L.B. Krivdin, Magn. Reson. Chem. 60, 733 (2022)

    Article  Google Scholar 

  10. K. Kamienska-Trela, J. Wójcik, Nucl. Magn. Reson. 42, 181 (2013)

    Article  Google Scholar 

  11. P.E. Hansen, Prog. Nucl. Magn. Reson. 42, 181 (1981)

    Google Scholar 

  12. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09W, revision A.02 (Gaussian Inc., Wallingford, 2009)

    Google Scholar 

  13. W. Deng, J.R. Cheeseman, M.J. Frisch, J. Chem. Theory Comput. 2, 1028 (2006)

    Article  Google Scholar 

  14. Y.A. Strelenko, V.N. Torocheshnikov, N.M. Sergeyev, J. Magn. Reson. 89, 123 (1990)

    ADS  Google Scholar 

  15. T. Coursindel, D. Farran, J. Martinez, G. Dewynter, Tetrahedron Lett. 49, 906 (2008)

    Article  Google Scholar 

  16. T.S. Shestakova, Z.O. Shenkarev, S.L. Deev, O.N. Chupakhin, I.A. Khalymbadzha, V.L. Rusinov, A.S. Arseniev, J. Org. Chem. 78, 6975 (2013)

    Article  Google Scholar 

  17. T.A. Ganina, D.A. Cheshkov, V.A. Chertkov, Russ. J. Org. Chem. 53, 12 (2017)

    Article  Google Scholar 

  18. T.A. Ganina, V.A. Chertkov, Russ. J. Org. Chem. 52, 489 (2016)

    Article  Google Scholar 

  19. L. Paolillo, E.D. Becker, J. Magn. Reson. 3, 200 (1970)

    ADS  Google Scholar 

  20. S. Berger, J.D. Roberts, J. Am. Chem. Soc. 96, 6757 (1974)

    Article  Google Scholar 

  21. S. Berger, S. Braun, 200 and more NMR experiments: a practical course (Wiley-VCH, Oxford, Weinheim, 2004)

    Google Scholar 

  22. V.V. Nalimov, The Theory of the Experiment (Nauka, Moscow, 1977)

    Google Scholar 

  23. P. Diehl, J. Jokisaari, J. Amrein, T. Väänänen, P. Pyykkö, J. Magn. Reson. 48, 495 (1982)

    ADS  Google Scholar 

  24. O.W. Sørensen, H. Bildsøe, H.J. Jakobsen, J. Magn. Reson. 45, 325 (1981)

    ADS  Google Scholar 

  25. J.S. Figueroa, N.A. Piro, C.R. Clough, C.C. Cummins, J. Am. Chem. Soc. 128, 940 (2006)

    Article  Google Scholar 

  26. W. McFarlane, Mol. Phys. 10, 603 (1966)

    Article  ADS  Google Scholar 

  27. J. Levic, R. Micura, Beilstein J. Org. Chem. 10, 1914 (2014)

    Article  Google Scholar 

  28. R.J. Halter, R.L. Fimmen, R.J. McMahon, S.A. Peebles, R.L. Kuczkowski, J.F. Stanton, J. Am. Chem. Soc. 123, 12353 (2001)

    Article  Google Scholar 

  29. A. Laxer, B. Fischer, J. Label. Compd. Radiopharm. 43, 47 (2000)

    Article  Google Scholar 

  30. P.L. Johnson, N.R. Pearson, B. Schuster, J. Cobb, J. Label. Compd. Radiopharm. 52, 382 (2009)

    Article  Google Scholar 

  31. S.J. Weiner, S.M. Holl, D.F. Covey, Magn. Reson. Chem. 32, 122 (1994)

    Article  Google Scholar 

  32. M.M. Guru, T. Shima, Z. Hou, Angew. Chem. 55, 12316 (2016)

    Article  Google Scholar 

  33. S.L. Deev, I.A. Khalymbadzha, T.S. Shestakova, V.N. Charushin, O.N. Chupakhin, RSC Adv. 9, 26856 (2019)

    Article  ADS  Google Scholar 

  34. G. Zhang, X. Ren, J. Chen, M. Hu, J. Cheng. Org. Lett. 13, 5004 (2011)

    Article  Google Scholar 

  35. X. Creary, A.F. Sky, G. Phillips, J. Org. Chem. 55, 2005 (1990)

    Article  Google Scholar 

  36. R.D. Wigglesworth, W.T. Raynes, S. Kirpekar, J. Oddershede, S.P.A. Sauer, J. Chem. Phys. 112, 3735 (2000)

    Article  ADS  Google Scholar 

  37. T. Khin, G.A. Webb, Org. Magn. Reson. 11, 487 (1978)

    Article  Google Scholar 

  38. R.W. Stephany, M.J.A. De Bie, W. Drenth, Org. Magn. Reson. 6, 45 (1974)

    Article  Google Scholar 

  39. W. McFarlane, J. Chem. Soc. 1660 (1967)

  40. N.J. Koole, D. Knol, M.J.A. De Bie, J. Magn. Reson. 21, 499 (1976)

    ADS  Google Scholar 

  41. I. Morishima, A. Mizumo, T. Yonezawa, K. Goto, J. Chem. Soc. Chem. Commun. vol. 1321 (1970)

  42. J.M. Garcia de la Vega, J. San Fabián, in: High resolution NMR Spectroscopy, vol. 3. Elsevier B.V., New York (2013)

  43. T. Axenrod, C.M. Watnick, M.J. Wieder, S. Duangthai, G.A. Webb, H.J.C. Yeh, S. Bulusu, M.M. King, Org. Magn. Reson. 20, 11 (1982)

    Article  Google Scholar 

  44. L. Ernst, E. Lustig, V. Wray, J. Magn. Reson. 22, 459 (1976)

    ADS  Google Scholar 

  45. M. Christl, Org. Magn. Reson. 7, 349 (1975)

    Article  Google Scholar 

  46. R.T. Lichter, J.D. Roberts, J. Am. Chem. Soc. 93, 5218 (1971)

    Article  Google Scholar 

  47. T. Wamsler, J.T. Nielsen, E.J. Pedersen, K. Schaumburg, J. Magn. Reson. 31, 177 (1978)

    ADS  Google Scholar 

  48. M. Fruchier, V. Pellegrin, R. Schimpf, J. Elguero. Org. Magn. Reson. 18, 10 (1982)

    Article  Google Scholar 

  49. A.K. Shestakova, V.V. Stanishevskiy, V.A. Chertkov, Chem. Heterocycl. Compd. (in press)

  50. T. Axenrod, M.J. Wieder, T. Khin, G.A. Webb, H.J.C. Yeh, S. Bulusu, Org. Magn. Reson. 12, 1 (1979)

    Article  Google Scholar 

  51. M. Hansen, H.J. Jacobsen, Acta Chem. Scand. 26, 2151 (1972)

    Article  Google Scholar 

  52. M.-L. Louillat, A. Biafora, F. Legros, F.W. Patureau, Angew. Chem. 53, 3505 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

A.K.S. acknowledges Alexander von Humboldt foundation for a stipend and travel grants. The authors are thankful to Dr. D.N. Laikov for valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

VVS—performed analysis of the literature, optimization of geometry and quantum-chemical evaluation of spin–spin coupling constants 13C–15N for the selected compounds, prepared figures, compiled tables based on the data obtained, and also actively participated in the discussion of the results and made an oral report on this topic at the Spinus-2022 conference; AKS performed all NMR experiments and analyzed results for compound 61, participated in the discussion of the text of the manuscript, compiled Table 10, and edited the figures; VAC took an active part in the planning, writing, editing and discussion of the results, participated in statistical treatment of the result. All the authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Vladislav V. Stanishevskiy.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanishevskiy, V.V., Shestakova, A.K. & Chertkov, V.A. Analysis of 2D Maps Based on Similarity in DFT-Calculated vs Experimental 13C–15N Spin Couplings for a Representative Sample of Conformationally Rigid and Structurally Fixed Nitrogen-Containing Organic Compounds. Appl Magn Reson 53, 1693–1713 (2022). https://doi.org/10.1007/s00723-022-01503-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01503-w

Navigation