Skip to main content
Log in

From one to three, exploring the rungs of Jacob’s ladder in magnetic alloys

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Magnetic systems represent an important challenge for electronic structure methods, in particular Density Functional Theory (DFT), which uses a single determinant wavefunction. To assess the predictions obtained by DFT in this type of materials, we benchmark different exchange correlation functionals with respect to each other, and with respect to available experimental data, on two families of binary iron alloys which are metallic and magnetic. We climb three rungs in Jacob’s ladder of DFT (i) the local density approximation, (ii) the industry standard approximation due to Perdew, Burke and Ernzerhof, and the revised version for solids, PBEsol (iii) and finally a very accurate meta-GGA functional SCAN, which corresponds to the third rung. More than 350 structures in ferromagnetic and antiferromagnetic configurations were considered. We compare the Convex Hull, the calculated magnetic moment, crystal structure, formation energy and electronic gap if present. We conclude that none of the functionals work in all conditions: whereas PBE and PBEsol can give a fair description of the crystal structure and the energetics, SCAN strongly overestimates the formation energy – giving values which are at least twice as large as PBE (and experiment). Magnetic moments are better predicted by PBE as well. Our results show that magnetic and strongly correlated materials are a tough litmus test for DFT, and that they represent the next frontier in the development of a truly universal exchange correlation functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  3. Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008)

    Article  Google Scholar 

  4. G.E. Scuseria, V.N. Staroverov, in Theory and applications of computational chemistry (Elsevier, 2005), pp. 669–724

  5. C. Fiolhais, F. Nogueira, M.A. Marques, in A primer in density functional theory (Springer Science & Business Media, 2003), Vol. 620

  6. E.K. Gross, R.M. Dreizler, in Density functional theory (Springer Science & Business Media, 2013), Vol. 337

  7. S. Grimme, Wiley Interdiscip Rev. Comput. Mol. Sci. 1, 211 (2011)

    Article  Google Scholar 

  8. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)

    Article  ADS  Google Scholar 

  9. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  10. A.D. Becke, J. Chem. Phys. 140, 18A301 (2014)

    Article  Google Scholar 

  11. J.P. Perdew, K. Schmidt, Jacobs ladder of density functional approximations for the exchange-correlation energy, in AIP Conference Proceedings (AIP, 2001), Vol. 577, pp. 1–20

  12. M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko, Science 355, 49 (2017)

    Article  ADS  Google Scholar 

  13. M.A. Marques, M.J. Oliveira, T. Burnus, Comp. Phys. Commun. 183, 2272 (2012)

    Article  ADS  Google Scholar 

  14. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, J. Chem. Phys. 123, 062201 (2005)

    Article  ADS  Google Scholar 

  16. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  18. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)

    Article  ADS  Google Scholar 

  19. F.G. Eich, E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

    Article  ADS  Google Scholar 

  20. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  21. J. Heyd, G.E. Scuseria, J. Chem. Phys. 120, 7274 (2004)

    Article  ADS  Google Scholar 

  22. A. Becke, E. Johnson, J. Chem. Phys. 124, 221101 (2006)

    Article  ADS  Google Scholar 

  23. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, S. Kurth, A. Zupan, P. Blaha, Phys. Rev. Lett. 82, 2544 (1999)

    Article  ADS  Google Scholar 

  25. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  26. J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu et al., Nat. Chem. 8, 831 (2016)

    Article  Google Scholar 

  27. H. Peng, Z.H. Yang, J.P. Perdew, J. Sun, Phys. Rev. X 6, 041005 (2016)

    Google Scholar 

  28. O. Levy, R.V. Chepulskii, G.L. Hart, S. Curtarolo, J. Am. Chem. Soc. 132, 833 (2009)

    Article  Google Scholar 

  29. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli et al., Comput. Mat. Sci. 58, 227 (2012)

    Article  Google Scholar 

  30. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  31. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  32. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  33. M. Sternik, S. Couet, J. Łażewski, P. Jochym, K. Parlinski, A. Vantomme, K. Temst, P. Piekarz, J. Alloys Comp. 651, 528 (2015)

    Article  Google Scholar 

  34. A.B. Shick, O.N. Mryasov, Phys. Rev. B 67, 172407 (2003)

    Article  ADS  Google Scholar 

  35. M. Annaorazov, S. Nikitin, A. Tyurin, K. Asatryan, A.K. Dovletov, J. Appl. Phys. 79, 1689 (1996)

    Article  ADS  Google Scholar 

  36. J. Kudrnovskỳ, V. Drchal, I. Turek, Phys. Rev. B 91, 014435 (2015)

    Article  ADS  Google Scholar 

  37. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. 56, 1078 (2014)

    Article  Google Scholar 

  38. M. Wuttig, J. Li, C. Craciunescu, Scr. Mater. 44, 2393 (2001)

    Article  Google Scholar 

  39. T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima, S. Muto, Appl. Phys. Lett. 77, 1502 (2000)

    Article  ADS  Google Scholar 

  40. G. Kim, S. Meschel, P. Nash, W. Chen, Sci. Data 4, 170162 (2017)

    Article  Google Scholar 

  41. M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G. Hart, S. Curtarolo, Comput. Mater. Sci. 136, S1 (2017)

    Article  Google Scholar 

  42. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Lany, Phys. Rev. B 78, 245207 (2008)

    Article  ADS  Google Scholar 

  44. O. Gutfleisch, J. Lyubina, K.H. Müller, L. Schultz, Adv. Eng. Mater. 7, 208 (2005)

    Article  Google Scholar 

  45. M. Rajagopalan, A. Kashyap, S. Auluck, G. Kalpana, J. Alloys Comp. 240, 124 (1996)

    Article  Google Scholar 

  46. T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, ASM Int. 1990, 1485 (1990)

    Google Scholar 

  47. H. Okamoto, L. Kacprzak, P. Subramanian, Binary alloy phase diagrams (ASM international, 1996)

  48. J. Hesse, G. Nölle, H. Körner, Solid State Commun. 46, 721 (1983)

    Article  ADS  Google Scholar 

  49. B. Wang, D. Berry, Y. Chiari, K. Barmak, J. Appl. Phys. 110, 013903 (2011)

    Article  ADS  Google Scholar 

  50. C.S. Wang, B.M. Klein, H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985)

    Article  ADS  Google Scholar 

  51. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  52. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  53. J.M. Tomczak, M. van Schilfgaarde, G. Kotliar, Phys. Rev. Lett. 109, 237010 (2012)

    Article  ADS  Google Scholar 

  54. S. Biermann, J. Phys.: Condens. Matter 26, 173202 (2014)

    Google Scholar 

  55. S. Kulagin, N. Prokof’ev, O. Starykh, B. Svistunov, C.N. Varney, Phys. Rev. B 87, 024407 (2013)

    Article  ADS  Google Scholar 

  56. F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack et al., J. Phys. Soc. Japan 74, 30 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo H. Romero.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, A.H., Verstraete, M.J. From one to three, exploring the rungs of Jacob’s ladder in magnetic alloys. Eur. Phys. J. B 91, 193 (2018). https://doi.org/10.1140/epjb/e2018-90275-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90275-5

Navigation