Skip to main content
Log in

Effects of substituents and charge on the RCHO⋯X–Y {X = Cl, Br, I; Y = –CF3, –CF2H, –CFH2, –CN, –CCH, –CCCN; R = –OH, –OCH3, –NH2, –O} halogen-bonded complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Noncovalent interactions involving halogen bonding interactions, one of the emerging interactions due to its directionality, have been a subject of interest for various researchers, owing to its role played in construction of supramolecular structures and crystal engineering. In this article, the RCHO⋯X–Y {X = Cl, Br, I; Y = –CF3, –CF2H, –CFH2, –CN, –CCH, –CCCN; R = –OH, –OCH3, –NH2, –O} halogen-bonded complexes have been investigated with aid of quantum chemical calculations at MP2/aug-cc-pVDZ(-PP) level. The geometrical, spectroscopic and energetic properties have been analyzed for these complexes with QTAIM, MEP and NBO analyses. For same RCHO molecule, the interaction energies increase in the order of O⋯Cl < O⋯Br < O⋯I and for the same X–Y; the trend is (HO)CHO < (CH3O)CHO < (H2N)CHO. The present article also compares the neutral complexes involving (HO)CHO, (CH3O)CHO and (H2N)CHO carbonyl molecules with those of charged carbonyl species HCOO. It has been found that strength of the latter complexes is highest among all of the four. The role of substituents in the complex formation has been analyzed on the basis of results obtained from MEP, QTAIM and NBO studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Feng Y, Rainteau D, Chachaty C, Yu ZW, Wolf C, Quinn PJ (2004) Biophys J 86:2208–2217

    Article  CAS  Google Scholar 

  3. Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–168

    Article  Google Scholar 

  4. Wu FG, Wang NN, Yu ZW (2009) Langmuir 25:13394–13401

    Article  CAS  Google Scholar 

  5. Metrangolo P, Pilati R, Resnati G (2006) CrystEngComm 8:946–947

    Article  CAS  Google Scholar 

  6. Metrangolo P, Resnati G (2008) Halogen bonding: fundamentals and applications, structure and bonding. Springer, Berlin

    Book  Google Scholar 

  7. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  8. Metrangolo P, Resnati G (2012) Cryst Growth Des 12:5835–5838

    Article  CAS  Google Scholar 

  9. Lu Y, Wang Y, Zhu W (2010) Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  10. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  11. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  12. Jentzsch AV, Matile S (2013) J Am Chem Soc 135:5302–5303

    Article  Google Scholar 

  13. Metrangolo P, Resnati G (2001) Chem Eur J 7:2511–2519

    Article  CAS  Google Scholar 

  14. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  15. Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci USA 104:6188–6193

    Article  CAS  Google Scholar 

  16. Minguez Espallargas G, Zordan F, Arroyo Marin L, Adams H, Shankland K, van de Streek J, Brammer L (2009) Chem Eur J 15:7554–7568

    Article  CAS  Google Scholar 

  17. Vidal F, Dávila MA, Torcuato AS, Gómez-Sal P, Mosquera ME (2013) Dalton Trans 42:7074–7084

    Article  CAS  Google Scholar 

  18. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem 44:57–64

    Article  Google Scholar 

  19. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  20. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  21. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  22. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  23. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  24. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  25. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  26. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) J Mol Model 19:4651–4659

    Article  CAS  Google Scholar 

  27. Han N, Zeng Y, Sun C, Li X, Sun Z, Meng L (2014) J Phys Chem A 118:7058–7065

    Article  CAS  Google Scholar 

  28. Han N, Zeng Y, Li X, Zheng S, Meng L (2013) J Phys Chem A 117:12959–12968

    Article  CAS  Google Scholar 

  29. Riley KE, Merz KM (2007) J Phys Chem A 111:1688–1694

    Article  CAS  Google Scholar 

  30. Lu Y-X, Zou J-W, Wang Y-H, Jiang Y-J, Yu Q-S (2007) J Phys Chem A 111:10781–10788

    Article  CAS  Google Scholar 

  31. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  32. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155–163

    Article  CAS  Google Scholar 

  33. Bauzá A, Quińonero D, Frontera A, Deyá PM (2011) Phys Chem Chem Phys 13:20371–20379

    Article  Google Scholar 

  34. Palusiak M (2010) J Mol Struct (Theochem) 945:89–92

    Article  CAS  Google Scholar 

  35. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  36. Zierkiewicz W, Wieczorek R, Hobza P, Michalska D (2011) Phys Chem Chem Phys 13:5105–5113

    Article  CAS  Google Scholar 

  37. Li Q, Xu X, Liu T, Jing B, Li W, Cheng J, Gong B, Sun J (2010) Phys Chem Chem Phys 12:6837–6843

    Article  CAS  Google Scholar 

  38. Grabowski SJ, Bilewicz E (2006) Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  39. Chen Y (2013) J Phys Chem A 117(33):8081–8090

    Article  CAS  Google Scholar 

  40. Solimannejad M, Malekani M (2013) J Phys Chem A 117:5551–5557

    Article  CAS  Google Scholar 

  41. Syzgantseva OA, Tognetti V, Joubert L (2013) J Phys Chem A 117:8969–8980

    Article  CAS  Google Scholar 

  42. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  43. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  44. Wood DE, Dunning TH (1995) J Chem Phys 103:4572–4585

    Article  Google Scholar 

  45. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  46. Boys SF, Bernadi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KItao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendel A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo C, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  48. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  49. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  50. Keith TA (2012) AIMALL, Version 12.06.03. AIMALL, Overland Park

  51. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  52. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95(4):829–847

    Article  CAS  Google Scholar 

  53. Murray JS, Politzer P (1998) J Mol Struct (Theochem) 425:107–114

    Article  CAS  Google Scholar 

  54. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  55. Hathwar VR, Gonnade RG, Munshi P, Bhadbhade MM, Row TNG (2011) Cryst Growth Des 11:1855–1862

    Article  CAS  Google Scholar 

  56. Glaser R, Chen N, Wu H, Knotts N, Kaupp M (2004) J Am Chem Soc 126:4412–4419

    Article  CAS  Google Scholar 

  57. Hauchecorne D, Herrebout WA (2013) J Phys Chem A 117:11548–11557

    Article  CAS  Google Scholar 

  58. Kaur D, Kaur R (2014) J Chem Sci 126(6):1763–1779

    Article  CAS  Google Scholar 

  59. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  60. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  61. Voth AR, Khuu P, Oishi K, Ho PS (2009) Nat Chem 1:74–79

    Article  CAS  Google Scholar 

  62. Aakeröy CB, Schultheiss NC, Rajbanshi A, Desper J, Moore C (2009) Cryst Growth Des 9(1):432–441

    Article  Google Scholar 

  63. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  64. Popelier P (2000) Atoms in molecules: an introduction. UMIST, Manchester

    Book  Google Scholar 

  65. Amezaga NJ, Pamies SC, Peruchena NM, Sosa GL (2010) J Phys Chem A 114:552–562

    Article  Google Scholar 

  66. Duarte DJ, Sosa GL, Peruchena NM (2013) J Mol Model 19:2035–2041

    Article  CAS  Google Scholar 

  67. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

  68. Cremar D, Kraka E (1984) Angew Chem Int Ed 23:627–628

    Article  Google Scholar 

  69. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to DST (INSPIRE Fellowship Programme) for their financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damanjit Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOC 3026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Kaur, R. & Shiekh, B.A. Effects of substituents and charge on the RCHO⋯X–Y {X = Cl, Br, I; Y = –CF3, –CF2H, –CFH2, –CN, –CCH, –CCCN; R = –OH, –OCH3, –NH2, –O} halogen-bonded complexes. Struct Chem 27, 961–971 (2016). https://doi.org/10.1007/s11224-015-0680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0680-y

Keywords

Navigation