Skip to main content
Log in

A study of the effects of solvent on structural and conformational properties of ranitidine tautomer forms by DFT method

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ranitidine is in a class of medications called H2 blockers. It decreases the amount of acid made in the stomach. It is commonly used in treatment of peptic ulcer disease (PUD) and gastro-esophageal reflux disease (GERD). In this study, the ranitidine’s tautomers stability, structural data, HOMO, LUMO orbitals (energies and shapes), ΔΕ HOMO–LUMO gaps, UV–visible data and graphs, dipole moments, Mulliken charges, thermodynamic and kinetic stabilities in aqueous media as a biological solvent, and some of the different media (vacuum, H2O, Et-OH and DMSO) were investigated for tautomers of ranitidine by the density functional theory (DFT) B3LYP/6-31G** method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Kahrilas JP (2008) N Engl J Med 359(16):1700–1707

    Article  CAS  Google Scholar 

  2. Khan M, Santana J, Donnellan C, Preston C, Moayyedi P (2007) Cochrane Database Syst Rev 18(2):CD003244

    Google Scholar 

  3. Jakob SM, Parviainen I, Ruokonen E et al (2005) Acta Anaesthesiol Scand 49(3):390–396

    Article  CAS  Google Scholar 

  4. Salom IL, Silvis SE, Doscherholmen A (1982) Scand J Gastroenterol 17(1):129–131

    Article  CAS  Google Scholar 

  5. Mitchell SL, Rockwood K (2001) J Clin Epidemiol 54(5):531–534

    Article  CAS  Google Scholar 

  6. Hardman JG, Petri AW (1996) Goodman and Gilman’s, the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 1092–1094

    Google Scholar 

  7. Pali-Schöll I, Jensen-Jarolim E (2011) Allergy 66(4):469–477

    Article  Google Scholar 

  8. Mallow S, Rebuck JA, Osler T et al (2004) Curr Surg 61(5):452–458

    Article  Google Scholar 

  9. Canani RB, Cirillo P, Roggero P et al (2006) Pediatrics 117(5):817–820

    Article  Google Scholar 

  10. Cobelens FGJ, Leentvarr-Kuijpers A, Kleijnen J, Coutinho RA (1998) Trop Med Intern Health 3:896–903

    Article  CAS  Google Scholar 

  11. Neal KR, Briji SO, Slack RCB et al (1994) Br Med J 308:176

    Article  CAS  Google Scholar 

  12. Neal KR, Scott HM, Slack RC, Logan RF (1996) BMJ 312:414–415

    Article  CAS  Google Scholar 

  13. Wickramasinghe LSP, Basu SK (1984) Br Med J 289(6454):1272

    Article  Google Scholar 

  14. Ruddell WS, Axon AT, Findlay JM et al (1980) Lancet I:672–674

    Article  Google Scholar 

  15. Untersmayr E, Bakos N, Scholl I et al (2005) FASEB J 19(6):656–658

    CAS  Google Scholar 

  16. Lednicer D (ed) (1993) Chronicles of drug discovery, vol 3. ACS Professional Reference Books, Washington, pp 45–81

    Google Scholar 

  17. Bradshaw J, Clitherow JW, Price BJ (1978) Aminoalkyl furan derivatives. US patent 4128,658, 5 Dec. 1978

  18. Targema M, Obi-Egbedi NO, Adeoye MD (2013) Comput Theor Chem 1012:47–53

    Article  CAS  Google Scholar 

  19. Shaji S, Eappen SM, Rasheed TMA, Nair KPR (2004) Spectrochem Acta Part 60:351–355

    Article  CAS  Google Scholar 

  20. Islam MM, Bhiuyan MDH, Bredow T, Try AC (2011) Comput Theor Chem 967:165–170

    Article  CAS  Google Scholar 

  21. Kosar B, Albayrak C, Ersanli CC, Odabasoglu M, Buyukgungor O (2012) Spectrochim Acta 93:1–9

    Article  CAS  Google Scholar 

  22. Praveen PL, Ojha DP (2012) Cryst Res Technol 47:91–100

    Article  Google Scholar 

  23. Anbarasan PM, Kumar PS, Geetha M, Govindan R, Manimegalai S, Velmurugan K (2010) Rec Res Sci Tech 2:8–16

    CAS  Google Scholar 

  24. Sundaraganesan N, Karpagam J, Sebastian S, Conard JP (2009) Spectrochem Acta 73:11–19

    Article  CAS  Google Scholar 

  25. Karakas A, Unver H (2010) Spectrochim Acta 75:1492–1496

    Article  Google Scholar 

  26. Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, A.T.B. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O’Neill, R.A. DiStasio Jr., R.C. Lochan, T. Wang, G.J.O. Beran, N.A. Besley, J.M. Herbert, C.Y. Lin, T. Van Voorhis, S.H. Chien, A. Sodt, R.P. Steele, V.A. Rassolov, P.E. Maslen, P.P. Korambath, R.D. Adamson, B. Austin, J. Baker, E.F.C. Byrd, H Dachsel, R.J. Doerksen, A. Dreuw, B.D. Dunietz, A.D. Dutoi, T.R. Furlani, S.R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R.Z. Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E.I. Proynov, P.A. Pieniazek, Y.M. Rhee, J. Ritchie, E. Rosta, C.D. Sherrill, A.C. Simmonett, J.E. Subotnik, H.L. Woodcock III, W. Zhang, A.T. Bell, A.K. Chakraborty, D.M. Chipman, F.J. Keil, A. Warshel, W.J. Hehre, H.F. Schaefer III, J. Kong, A.I. Krylov, P.M.W. Gill, M. Headgordon, B.J. Deppmeier, A.J. Driessen, T.S. Hehre, J.A. Johnson, P.E. Klunzinger, J.M. Leonard, I.N. Pham, W.J. Pietro, J. Yu, SPARTAN’10, build 1.0.1, (Wavefunction Inc., Irvine CA, 2011)

  27. Dufert A, Werz DB (2008) J Org Chem 73:5514–5519

    Article  Google Scholar 

  28. Kavitha E, Sundaraganesan N, Sebastian S (2010) Indian J Pure Appl Phys 48:20–30

    CAS  Google Scholar 

  29. Ramachandran KI, Deepa G, Namboori K (2008) Computational chemistry and molecular modelling: principles and applications. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  30. Budyka MF, Zyubina TS, Zarkadis AK (2002) J Mol Struct 594:113–125

    Article  CAS  Google Scholar 

  31. Lee YO, Pradhan T, No K, Kim JS (2012) Tetrahedron 68:1704–1711

    Article  CAS  Google Scholar 

  32. Amalanathan M, Joe IH, Rastogi VK (2011) J Mol Struct 985:48–56

    Article  CAS  Google Scholar 

  33. Dorsett H, White A (2000) Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials: a review. DSTO Aeronautical and Maritime Research Laboratory, Australia

    Google Scholar 

  34. Atkins PW, Friedman RS (2004) Molecular quantum mechanics, 4th edn. Oxford University Press, New York

    Google Scholar 

  35. Grossmann B, Heinze J, Moll T, Palivan C, Ivan S, Gescheidt G (2004) J Phys Chem 108:4669–4672

    Article  CAS  Google Scholar 

  36. Gece G (2008) Corros Sci 50:2981–2992

    Article  CAS  Google Scholar 

  37. Atkins P, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, New York

    Google Scholar 

  38. Mortimer RG (2008) Physical chemistry, 3rd edn. Elsevier Inc., USA

    Google Scholar 

  39. Parimala K, Balachandran V (2011) Spectrochim Acta 81(1):711–723

    Article  CAS  Google Scholar 

  40. http://en.wikipedia.org/w/index.php?title=Mulliken_population_analysis&oldid=572345005

  41. Mulliken RS (1955) J Chem Phys 23(10):1833–1840

    Article  CAS  Google Scholar 

  42. Leach AR (2011) Molecular modelling: principles and applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  43. Schlik T (2013) Molecular modeling and simulation: an interdisciplinary guide (Interdisciplinary applied mathematics), 2nd edn. Springer, Heidelberg

    Google Scholar 

  44. Ohlinger WS, Philip KE, Bernard JD, Warren JH (2009) J Phys Chem 113(10):2165–2175

    Article  CAS  Google Scholar 

  45. Bickelhaupt FM, van Eikema Hommes NJR, Fonseca Guerra C, Baerends EJ (1996) Organometallics 15(13):2923–2931

    Article  CAS  Google Scholar 

  46. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735–746

    Article  CAS  Google Scholar 

  47. Salve P, Gharge D, Kirtawade R, Dhabale P, Burade K (2010) Int J Pharm Tech Res 2(3):2071–2074

    CAS  Google Scholar 

  48. Mishra AN, Rana AC (2009) Int J Chem Sci 7(3):2208–2210

    CAS  Google Scholar 

  49. Dash SC, Das NN, Mohanty P (2011) Indian J Chem Tech 18:132–136

    CAS  Google Scholar 

  50. https://mc.usp.org/sites/default/files/documents/Ranitidine%20HCl%20Summary%20Validation%20Report-2013-04-12_0.pdf, and https://mc.usp.org/sites/default/files/documents/Ranitidine%20Injection%20Summary%20Validation%20Report-2013-05-31.pdf; USP-MC, Ranitidine Hydrochloride Summary Validation Report, 2013, Pages 1–34

  51. http://www.gsk.ca/english/docs-pdf/product-monographs/Zantac.pdf

Download references

Acknowledgments

The corresponding author gratefully acknowledges Theoretical and Computational Research Center of Chemistry and Nano Sciences, Faculty of Chemistry, Razi University, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avat Arman Taherpour.

Supplementary Data

The selected structural data of the Ranitidine tautomers T1, T2 & T3 (without H-Bond) and T1-H, T2-H & T3-H (with H-Bond) in the vacuum and the selected solvents (H2O, Et-OH and DMSO) were demonstrated in Fig. 1, 2, 3 in the supplementary data.

Supplementary material 1 (DOC 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherpour, A.A., Mozafai, A., Ranjbar, S. et al. A study of the effects of solvent on structural and conformational properties of ranitidine tautomer forms by DFT method. Struct Chem 26, 517–529 (2015). https://doi.org/10.1007/s11224-014-0510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0510-7

Keywords

Navigation