Skip to main content
Log in

Microstructural Verification, Mechanical and Wear Analysis of MoTaNbVxTi Refractory High-Entropy Alloys

  • Published:
Strength of Materials Aims and scope

MoTaNbVxTi (x = 0.25, 0.50, and 0.75 at.%) refractory high-entropy alloys were synthesized via vacuum arc melting. The cross-sectional microstructural investigation revealed a Ti segregation tendency in the interdendritic area and a mostly homogeneous distribution of the rest elements in the dendritic parts. The calculated empirical models further verified the aforementioned microstructural evidence. Regarding the alloys’ mechanical investigation, both Vickers microhardness and Rockwell hardness estimations were escalated to values higher than those of the constituent elements, suggesting the operation of a solid solution strengthening mechanism. In terms of compression, the alteration of V content seemed to affect the alloys’ response, since the alloys with increased V content exhibited improved properties. The fracture surfaces presented cleavage/tearing characteristics, with the river-like patterns’ presence, defining their modes. In terms of their work-hardening rate, the alloys exhibited two regimes during the compression test due to possible changes in the deformation mechanisms. Finally, wear rate values verified that the harder the alloy (increased V content), the greater the wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Y. W. Yeh, S. K. Chen, S. U. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  2. C. Ng, S. Guo, J. Luan, et al., “Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy,” Intermetallics, 31, 165–172 (2012).

    Article  Google Scholar 

  3. S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng. A., 527, 1027–1030 (2010).

    Article  Google Scholar 

  4. Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., 61, 1–93 (2014).

    Article  Google Scholar 

  5. M. C. Troparevsky, J. R. Morris, P. R. C. Kent, et al., “Criteria for predicting the formation of single-phase high-entropy alloys,” Phys. Rev. X, 5, 011041-1–011041-6 (2015).

  6. D. J. M. King, S. C. Middleburgh, A. G. McGregor, and M. B. Cortie, “Predicting the formation and stability of single phase high-entropy alloys,” Acta Mater., 104, 172–179 (2016).

    Article  CAS  Google Scholar 

  7. O. Senkov and D. B. Miracle, “A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,” J. Alloy. Compd., 658, 603–607 (2016).

    Article  CAS  Google Scholar 

  8. M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys. Fundamentals and Applications, Springer (2016).

    Book  Google Scholar 

  9. A. Shabani, M. R. Toroghinejad, A. Shafyei, and R. E. Loge, “Evaluation of the mechanical properties of the heat treated FeCrCuMnNi high entropy alloy,” Mater. Chem. Phys., 221, 68–77 (2019).

    Article  CAS  Google Scholar 

  10. J. Gu and M. Song, “Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy,” Scripta Mater., 162, 345–349 (2019).

    Article  CAS  Google Scholar 

  11. J. T. Liang, K. C. Cheng, and S. H. Chen, “Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders,” J. Alloy. Compd., 803, 484–490 (2019).

    Article  CAS  Google Scholar 

  12. X. Feng, K. Zhang, Y. Zheng, et al., “Effect of Zr content on structure and mechanical properties of (CrTaNbMoV)Zrx high-entropy alloy films,” Nucl. Instrum. Meth. B, 457, 56–62 (2019).

    Article  CAS  Google Scholar 

  13. S. Elkatatny, M. A. H. Gepreel, A. Hamada, et al., “Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy,” Mater. Sci. Eng. A, 759, 380–390 (2019).

    Article  CAS  Google Scholar 

  14. C. R. LaRosa, M. Shih, C. Varvenne, and M. Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys,” Mater. Charact., 151, 310–317 (2019).

    Article  CAS  Google Scholar 

  15. H. Song, D. G. Kim, D. W. Kim, et al., “Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy,” Sci. Rep., 9, 6163–6175 (2019).

    Article  Google Scholar 

  16. J. M. Park, J. Moon, J. W. Bae, et al., “Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy,” Mater. Sci. Eng. A, 719, 155–163 (2018).

    Article  CAS  Google Scholar 

  17. W. Li, G. Wang, S. Wu, and P. K. Liaw, “Creep, fatigue, and fracture behavior of high-entropy alloys,” J. Mater. Res., 33, 3011–3034 (2018).

    Article  CAS  Google Scholar 

  18. S. H. Joo, H. Kato, M. J. Jang, et al., “Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy,” Mater. Sci. Eng. A, 689, 122–133 (2017).

    Article  CAS  Google Scholar 

  19. L. Rogal, Z. Szklarz, P. Bobrowski, et al., “Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy,” Met. Mater. Int., 25, 930–945 (2019).

    Article  CAS  Google Scholar 

  20. O. Senkov, C. Woodward, and D. Miracle, “Microstructure and properties of aluminum-containing refractory high-entropy alloys,” JOM, 66, 2030–2042 (2014).

    Article  CAS  Google Scholar 

  21. M. Annasamy, N. Haghdadi, A. Taylor, et al., “Dynamic recrystallization behaviour of AlxCoCrFeNi high entropy alloys during high-temperature plane strain compression,” Mater. Sci. Eng. A, 745, 90–106 (2019).

    Article  CAS  Google Scholar 

  22. R. Carroll, C. Lee, C. W. Tsai, et al., “Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys,” Sci. Rep., 5, 16997 (2015).

    Article  CAS  Google Scholar 

  23. H. Y. Yasuda, K. Shigeno, and T. Nagase, “Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals,” Scripta Mater., 108, 80–83 (2015).

    Article  CAS  Google Scholar 

  24. M. Seifi, D. Li, Z. Yong, et al., “Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys,” JOM, 67, 2288–2295 (2015).

    Article  CAS  Google Scholar 

  25. K. V. S. Thurston, B. Gludovatz, A. Hohenwarter, et al., “Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi,” Intermetallics, 88, 65–72 (2017).

    Article  CAS  Google Scholar 

  26. M. A. Hemphill, T. Yuan, G. Y. Wang, et al., “Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys,” Acta Mater., 60, 5723–5734 (2012).

    Article  CAS  Google Scholar 

  27. P. Y. Chen, C. Lee, S. Y. Wang, et al., “Fatigue behavior of high-entropy alloys: A review,” Sci. China Tech. Sci., 61, 168–178 (2018).

    Article  Google Scholar 

  28. S. Yang, Z. Liu, and J. Pi, “Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing,” Mater. Lett., 261, 127004 (2020).

  29. J. K. Xiao, H. Tan, Y. Q. Wu, et al., “Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying,” Surf. Coat. Technol., 385, 125430 (2020).

  30. Y. Zhang, S. G. Ma, and J. W. Qiao, “Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and Bridgman solidification,” Metall. Mater. Trans. A, 43, 2625–2630 (2012).

    Article  CAS  Google Scholar 

  31. A. Ludwig, I. Wagner, J. Laakmann, and P. R. Sahm, “Undercooling of superalloy melts: basis of a new manufacturing technique for single-crystal turbine blades,” Mater. Sci. Eng. A, 178, 299–303 (1994).

    Article  CAS  Google Scholar 

  32. X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., 132, 233–238 (2012).

    Article  CAS  Google Scholar 

  33. O. N. Senkov, J. M. Scott, S. V. Senkova, et al., “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloy. Compd., 509, 6043–6048 (2011).

    Article  CAS  Google Scholar 

  34. X. Yang, Y. Zhang, and P. K. Liaw, “Microstructure and compressive properties o NbTiVTaAlx high entropy alloys,” Procedia Engineer., 36, 292–298 (2011).

    Article  Google Scholar 

  35. J. Joseph, N. Stanford, P. Hodgson, and D. M. Fabijanic, “Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy,” Scripta Mater., 129, 30–34 (2017).

    Article  CAS  Google Scholar 

  36. D. H. Xiao, P. F. Zhou, W. Q. Wu, et al., “Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys,” Mater. Design, 116, 438–447 (2017).

  37. D. Hull, “Interpretation of river line patterns on indentation generated fracture surfaces with comments on the fractal characteristics,” J. Mater. Sci. Lett., 15, 651–653 (1996).

    Article  CAS  Google Scholar 

  38. J. T. Fan, L. J. Zhang, P. F. Yu, et al., “A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression performance,” Scripta Mater., 159, 18–23 (2019).

    Article  CAS  Google Scholar 

  39. A. Rohatgi, K. S. Vecchio, and G. T. Gray, “The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery,” Metall. Mater. Trans. A, 32, 135–145 (2001).

    Article  Google Scholar 

  40. N. Kumar, Q. Ying, X. Nie, et al., “High strain-rate compressive deformation behavior of the Al0.1CrFeCoNihigh entropy alloy,” Mater. Design, 86, 598–602 (2015).

    Article  CAS  Google Scholar 

  41. S. I. Rao, C. Varvenne, C. Woodward, et al., “Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy,” Acta Mater., 125, 311–320 (2017).

    Article  CAS  Google Scholar 

  42. S. P. Wang, E. Mac, and J. Xu, “Notch fracture toughness of body-centered-cubic (TiZrNbTa)–Mo high entropy alloys,” Intermetallics, 103, 78–87 (2018).

    Article  CAS  Google Scholar 

  43. M. M. Khruschov, “Principles of abrasive wear,” Wear, 28, 69–88 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Karantzalis.

Additional information

Translated from Problemy Prochnosti, No. 6, p. 124, November – December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulia, A., Mathiou, C., Georgatis, E. et al. Microstructural Verification, Mechanical and Wear Analysis of MoTaNbVxTi Refractory High-Entropy Alloys. Strength Mater 53, 1011–1022 (2021). https://doi.org/10.1007/s11223-022-00368-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-022-00368-5

Keywords

Navigation