Skip to main content
Log in

Investigation of the Thermomechanical and Tribological Behaviors of a Non-equimolar Hf0.5Nb0.5Ta0.5Ti1.5Zr Refractory High Entropy Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical, physical, thermodynamic and wear resistance properties of a non-equimolar and complex Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory HEA, were studied. Various thermodynamic parameters like mixing enthalpy (ΔHmix), a unitless variable (Ω), and configurational or mixing entropy (ΔSmix) were investigated to characterize this multi-component alloy. The collective behavior of the constituent components was studied, and the nature of the solution was predicted. These calculated parameters confirm the forming of a solid solution, leading to a body center cubic (BCC) microstructure predicted by the valence electron configuration (VEC), which is confirmed by XRD analysis. The sluggish diffusion causes dendritic growth in the structure, a general characteristic of these HEAs. Further, wear behavior was analyzed and observed ploughing with plastic deformation, both dominating the wear mechanism confirmed by the field emission scanning electron microscopy and energy-dispersive x-ray spectroscopy analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.

    Article  CAS  Google Scholar 

  2. M.-H. Tsai and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2(3), p 107–123.

    Article  Google Scholar 

  3. T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, and A. Matsugaki et al., Development of TiNbTaZrMo Bio-high Entropy Alloy (BioHEA) Super-Solid Solution by Selective Laser Melting, and its Improved Mechanical Property and Biocompatibility, Scr. Mater., 2021, 194, p 113658.

    Article  CAS  Google Scholar 

  4. T.-K. Tsao, A.-C. Yeh, C.-M. Kuo, K. Kakehi, H. Murakami, J.-W. Yeh, and S.-R. Jian, The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy, Sci. Rep., 2017, 7(1), p 12658.

    Article  Google Scholar 

  5. J. Zhang, C. Gadelmeier, S. Sen, R. Wang, Yu. Xi Zhang, U.G. Zhong, B. Grabowski, G. Wilde, and S.V. Divinski, Zr Diffusion in BCC Refractory High Entropy Alloys: A Case of ‘Non-sluggish’Diffusion Behavior, Acta Mater., 2022, 233, p 117970.

    Article  CAS  Google Scholar 

  6. M. Heidelmann, M. Feuerbacher, D. Ma, and B. Grabowski, Structural Anomaly in the High-Entropy Alloy ZrNbTiTaHf, Intermetallics, 2016, 68, p 11–15.

    Article  CAS  Google Scholar 

  7. S. Sheikh, M.K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, T. Tsao, U. Klement, D. Canadinc, H. Murakami, and S. Guo, Accelerated Oxidation in Ductile Refractory High-Entropy Alloys, Intermetallics, 2018, 97, p 58–66.

    Article  CAS  Google Scholar 

  8. Y. Lu, H. Jiang, S. Guo, T. Wang, Z. Cao, and T. Li, A New Strategy to Design Eutectic High-Entropy Alloys Using Mixing Enthalpy, Intermetallics, 2017, 91, p 124–128.

    Article  CAS  Google Scholar 

  9. Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, and T.G. Nieh, An Assessment on the Future Development of High-Entropy Alloys: Summary from a Recent Workshop, Intermetallics, 2015, 66, p 67–76.

    Article  CAS  Google Scholar 

  10. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19(5), p 698–706.

    Article  CAS  Google Scholar 

  11. S. Guo, Phase Selection Rules for Cast High Entropy Alloys: An Overview, Mater. Sci. Technol., 2015, 31(10), p 1223–1230.

    Article  CAS  Google Scholar 

  12. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  CAS  Google Scholar 

  13. F.X. Qin, X.M. Wang, G.Q. Xie, and A. Inoue, Distinct Plastic Strain of Ni-free Ti-Zr-Cu-Pd-Nb Bulk Metallic Glasses with Potential for Biomedical Applications, Intermetallics, 2008, 16(8), p 1026–1030.

    Article  CAS  Google Scholar 

  14. T. Nagase, M. Todai, T. Hori, and T. Nakano, Microstructure of Equiatomic and Non-equiatomic Ti-Nb-Ta-Zr-Mo High-Entropy Alloys for Metallic Biomaterials, J. Alloys Compd., 2018, 753, p 412–421.

    Article  CAS  Google Scholar 

  15. S. Rajendrachari, An Overview of High-Entropy Alloys Prepared by Mechanical Alloying Followed by the Characterization of their Microstructure and Various Properties, Alloys, 2022, 1(2), p 116–132.

    Article  Google Scholar 

  16. U. Bhandari, H. Ghadimi, C. Zhang, F. Gao, S. Yang, and S. Guo, Computational Exploration of Biomedical HfNbTaTiZr and Hf0.5Nb0.5Ta0.5Ti1.5Zr Refractory High-Entropy Alloys, Mater. Res. Express, 2021, 8(9), p 096534.

    Article  Google Scholar 

  17. S. Sheikh, S. Shafeie, Hu. Qiang, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, and S. Guo, Alloy Design for Intrinsically Ductile Refractory High-Entropy Alloys, J. Appl. Phys., 2016, 120(16), p 164902.

    Article  Google Scholar 

  18. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18(9), p 1758–1765.

    Article  CAS  Google Scholar 

  19. T. Li, J. Miao, Lu. Yiping, T. Wang, and T. Li, Effect of Zr on the As-cast Microstructure and Mechanical Properties of Lightweight Ti2VNbMoZrx Refractory High-Entropy Alloys, Int. J. Refract Metal Hard Mater., 2022, 103, p 105762.

    Article  CAS  Google Scholar 

  20. A.Y. Adesina, Tribological Behavior of TiN/TiAlN, CrN/TiAlN, and CrAlN/TiAlN Coatings at Elevated Temperature, J. Mater. Eng. Perform., 2022, 31(8), p 6404–6419.

    Article  CAS  Google Scholar 

  21. G. Laplanche, P. Gadaud, L. Perrière, I. Guillot, and J.P. Couzinié, Temperature Dependence of Elastic Moduli in a Refractory HfNbTaTiZr High-Entropy Alloy, J. Alloys Compd., 2019, 799, p 538–545.

    Article  CAS  Google Scholar 

  22. M.C. Gao, D.B. Miracle, D. Maurice, X. Yan, Y. Zhang, and J.A. Hawk, High-Entropy Functional Materials, J. Mater. Res., 2018, 33(19), p 3138–3155.

    Article  CAS  Google Scholar 

  23. Y. Li, P.K. Liaw, and Y. Zhang, Microstructures and Properties of the Low-Density Al15Zr40Ti28Nb12M (Cr, Mo, Si)5 High-Entropy Alloys, Metals, 2022, 12(3), p 496.

    Article  Google Scholar 

  24. J.Q. Yao, X.W. Liu, N. Gao, Q.H. Jiang, N. Li, G. Liu, and Z.T. Fan, Phase Stability of a Ductile Single-Phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr Refractory High-Entropy Alloy, Intermetallics, 2018, 98, p 79–88.

    Article  CAS  Google Scholar 

  25. M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Y. Champion, Insights into the Phase Diagram of the CrMnFeCoNi High Entropy Alloy, Acta Mater., 2015, 88, p 355–365.

    Article  CAS  Google Scholar 

  26. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and Mechanical Properties of Refractory MoNbHfZrTi High-Entropy Alloy, Mater. Des., 2015, 81, p 87–94.

    Article  CAS  Google Scholar 

  27. Y. Wang, X. Li, and A. Liang, Wear Behavior and Microstructural Transformation of Single fcc Phase AlCoCrFeNi High-Entropy Alloy at Elevated Temperatures, Int. J. Mater. Res., 2022, 113(8), p 730–743.

    Article  CAS  Google Scholar 

  28. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538.

    Article  CAS  Google Scholar 

  29. G. Cieślak, J. Dąbrowa, M. Jawańska, A. Parzuchowska, and D. Oleszak, Microstructure and Mechanical Properties of the Ductile Al-Ti-Mo-Nb-V Refractory High Entropy Alloys, Metall. Mater. Trans. A, 2022, 53(2), p 653–662.

    Article  Google Scholar 

  30. A.S. Hakeem et al., Comparative Evaluation of Thermal and Mechanical Properties of Nickel Alloy 718 Prepared Using Selective Laser Melting, Spark Plasma Sintering, and Casting Methods, J. Mater. Res. Technol., 2021, 12, p 870–881.

    Article  CAS  Google Scholar 

  31. D. Piorunek, J. Frenzel, N. Joens, C. Somsen, and G. Eggeler, Chemical complexity, Microstructure and Martensitic Transformation in High Entropy Shape Memory Alloys, Intermetallics, 2020, 122, p 106792.

    Article  CAS  Google Scholar 

  32. L. Wang, J.W. Qiao, S.G. Ma, Z.M. Jiao, T.W. Zhang, G. Chen, D. Zhao, Y. Zhang, and Z.H. Wang, Mechanical Response and Deformation Behavior of Al0.6CoCrFeNi High-Entropy Alloys Upon Dynamic Loading, Mater. Sci. Eng. A, 2018, 727, p 208–213.

    Article  CAS  Google Scholar 

  33. M. Chen, L. Lan, X. Shi, H. Yang, M. Zhang, and J. Qiao, The Tribological Properties of Al0.6CoCrFeNi High-Entropy Alloy with the σ Phase Precipitation at Elevated Temperature, J. Alloys Compd., 2019, 777, p 180–189.

    Article  CAS  Google Scholar 

  34. J. Zhang, X. Li, Y. Zhang, F. Zhang, Wu. Hongxing, X.-Z. Wang, Q. Zhou, and H. Wang, Sluggish Dendrite Growth in an Undercooled High Entropy Alloy, Intermetallics, 2020, 119, p 106714.

    Article  CAS  Google Scholar 

  35. A.K. Kasar, K. Scalaro, and P.L. Menezes, Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range—A Review, Materials, 2021, 14(19), p 5814.

    Article  CAS  Google Scholar 

  36. G. Deng, A.K. Tieu, X. Lan, L. Su, L. Wang, Q. Zhu, and H. Zhu, Effects of Normal Load and Velocity on the Dry Sliding Tribological Behaviour of CoCrFeNiMo0.2 High Entropy Alloy, Tribol. Int., 2020, 144, p 106116.

    Article  CAS  Google Scholar 

  37. A.Y. Adesina, A.S. Hakeem, M.U. Azam, B.A. Ahmed, A.B. Ibrahim, M.A. Ehsan, and A.A. Sorour, Thermomechanical and Tribological Properties of Spark Plasma Sintered Bearing steel/cBN (Ni) Composites for Engineering Applications, J. Mater. Res. Technol., 2020, 9(6), p 14645–14661.

    Article  CAS  Google Scholar 

  38. M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, and J. Qiao, Wear Behavior of Al0.6CoCrFeNi High-Entropy Alloys: Effect of Environments, J. Mater. Res., 2018, 33(19), p 3310–3320.

    Article  CAS  Google Scholar 

  39. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy Alloys, Acta Mater., 2011, 59(16), p 6308–6317.

    Article  CAS  Google Scholar 

  40. M. Sadeghilaridjani, M. Pole, S. Jha, S. Muskeri, N. Ghodki, and S. Mukherjee, Deformation and Tribological Behavior of Ductile Refractory High-Entropy Alloys, Wear, 2021, 478, p 203916.

    Article  Google Scholar 

  41. A.S. Hakeem et al., Microstructural, Thermomechanical and Tribological Behavior of Refractory High-Entropy AlxCr0.25Nb0.5Ta0.5Ti1.5 (x = 0.5, 1) Alloys, J. Mater. Res. Technol., 2023, 26, p 2394–2406.

    Article  CAS  Google Scholar 

  42. B. Bhushan, Introduction to Tribology, 2nd ed. Wiley, New York, OH USA, 2013.

    Book  Google Scholar 

  43. T. Li, W. Jiao, J. Miao, Lu. Yiping, E. Guo, T. Wang, T. Li, and P.K. Liaw, A Novel ZrNbMoTaW Refractory High-Entropy Alloy with In-Situ Forming Heterogeneous Structure, Mater. Sci. Eng. A, 2021, 827, p 142061.

    Article  CAS  Google Scholar 

  44. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  45. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and V on Structure and Mechanical Properties of High-Entropy Alloys Based on CoCrFeNi System, J. Alloys Compd., 2014, 591, p 11–21.

    Article  CAS  Google Scholar 

  46. F. Liu, P.K. Liaw, and Y. Zhang, Recent Progress with BCC-Structured High-Entropy Alloys, Metals, 2022, 12(3), p 501.

    Article  CAS  Google Scholar 

  47. R. Yang, A. Lan, H. Yang, Xi. Jin, and J. Qiao, The Chromization on Hot-Rolled Fe40Mn20Cr20Ni20 High-Entropy Alloys by Pack Cementation, J. Alloys Compd., 2023, 947, p 169582.

    Article  CAS  Google Scholar 

  48. Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, and J. Qiao, Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 233–239.

    Article  CAS  Google Scholar 

  49. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of Temperature on the Tribological Behavior of Al0.25CoCrFeNi High-Entropy Alloy, J. Mater. Sci. Technol., 2019, 35(5), p 917–925.

    Article  CAS  Google Scholar 

  50. T. Li, S. Wang, W. Fan, Y. Lu, T. Wang, T. Li, and P.K. Liaw, CALPHAD-aided Design for Superior Thermal Stability and Mechanical Behavior in a TiZrHfNb Refractory High-Entropy Alloy, Acta Mater., 2023, 246, p 118728.

    Article  CAS  Google Scholar 

  51. T. Li, Y. Lu, Z. Li, T. Wang, and T. Li, Hot Deformation Behavior and Microstructure Evolution of Non-equimolar Ti2ZrHfV0.5Ta0.2 Refractory High-Entropy Alloy, Intermetallics, 2022, 146, p 107586.

    Article  CAS  Google Scholar 

  52. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, Microstructure And Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy, J. Mater. Sci., 2012, 47, p 4062–4074.

    Article  CAS  Google Scholar 

  53. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509(20), p 6043–6048.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from γIRC-HES, King Fahd University of Petroleum and Minerals, Saudi Arabia, and GIK Institute of Engineering Science and Technology, Pakistan. We would also like to thank Mr. Hafiz Muzammil Irshad (University of Quebec) for all his support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rida Batool Naqvi or Abbas Saeed Hakeem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 600 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, R.B., Khan, M.I., Hakeem, A.S. et al. Investigation of the Thermomechanical and Tribological Behaviors of a Non-equimolar Hf0.5Nb0.5Ta0.5Ti1.5Zr Refractory High Entropy Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08983-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08983-2

Keywords

Navigation