Skip to main content
Log in

Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification

  • Symposium: Bulk Metallic Glasses VIII
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The AlCoCrFeNi high-entropy alloys (HEAs) were prepared by the copper mold casting and Bridgman solidification. X-ray diffraction (XRD) results verify that the main phase was body-centered-cubic (bcc) solid solution by these two solidification processes, indicating its good phase stability. Interestingly, the metallographic photos show a morphology transition from dendrites to equiaxed grains after Bridgman solidification, which was considered to have a strong dependence on the parameter of the G/V (the temperature gradient to the growth rate ratio). Compared to the as-cast sample, the plasticity of alloys synthesized by Bridgman solidification was improved by a maximum of 35 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. G.L. Chen and C.T. Liu: Int. Mater. Rev., 2001, vol. 46, pp. 253–60.

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P.K. Night, and A.J. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–18.

    Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.S. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  4. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Intermetallics, 2007, vol. 15, pp. 357–62.

    Article  CAS  Google Scholar 

  5. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Appl. Phys. Lett., 2007, vol. 90, pp. 181904-1-3.

  6. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Mater. Sci. Eng. A, 2008, vol. 491, pp. 154–58.

    Article  Google Scholar 

  7. L.H. When, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou: Intermetallics, 2009, vol. 17, pp. 266–69.

    Article  Google Scholar 

  8. F.J. Wang, Y. Zhang, and G.L. Chen: J. Eng. Mater. Technol., 2009, vol. 131, pp. 034501-1-3.

  9. C.W. T, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen: J. Alloy Compd., 2009, vol. 486, pp. 427–35.

  10. Z.H. Hu, Y.Z. Zhan, G.H. Zhang, J. She, and C.H. Li: Mater. Des., 2010, vol. 31, pp. 1599–1602.

  11. T.T. Shun, C.H. Hung, and C.F. Lee: J. Alloy Compd., 2010, vol. 495, pp. 55–58.

    Article  CAS  Google Scholar 

  12. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart: Acta Mater., 2011, vol. 59, pp. 182–90.

    Article  CAS  Google Scholar 

  13. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6975–79.

    Article  Google Scholar 

  14. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, p. 7210–14.

    Article  Google Scholar 

  15. C. Li, J.C. Li, M. Zhao, and Q. Jiang: J. Alloy Compd., 2010, vol. 504S, pp. S516–18.

    Google Scholar 

  16. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 64, pp. 75–83.

    Google Scholar 

  17. P.N. Quested and M. Mclean: Mater. Sci. Eng., 1984, vol. 65, pp. 171–80.

    Article  CAS  Google Scholar 

  18. J. Lapin and Z. Gabalcová: Intermetallics, 2011, vol. 19, pp. 797–804.

    Article  CAS  Google Scholar 

  19. J.W. Qiao, Y. Zhang, and P.K. Liaw: Adv. Eng. Mater., 2008, vol. 10, pp. 1039–42.

    Article  CAS  Google Scholar 

  20. J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, and G.L. Chen: Appl. Phys. Lett., 2009, vol. 94, pp. 151905-1-3.

  21. J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, and C.P. Chuang: Acta Mater., 2011, vol. 59, pp. 4126–37.

  22. L. Hu, B.Y. Liu, F. Ye, B.C. Wei, and G.L. Chen: Intermetallics, 2011, vol. 19, pp. 662–65.

    Article  CAS  Google Scholar 

  23. S. Henry, T. Minghetti, and M. Rappaz: Acta Mater., 1998, vol. 18, pp. 6440–43.

    Google Scholar 

  24. J.W. Yeh: Ann. Chim. Sci. Mater., 2006, vol. 31, pp. 633–48.

    Article  CAS  Google Scholar 

  25. J.A. Hanna, I. Baker, M.W. Wittmann, and P.R. Munroe: J. Mater. Res., 2005, vol. 20, pp. 791–95.

    Article  CAS  Google Scholar 

  26. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw and Y. Zhang: Mater. Sci. Forum, 2011, vol. 668, pp. 419–25.

    Article  Google Scholar 

  27. A. Ludwig, I. Wager, J. Laakmann, and P.R. Sahm: Mater. Sci. Eng. A, 1994, vol. 178, pp. 299–303.

    Article  CAS  Google Scholar 

  28. S. Terzi, L. Salvo, M. Suery, A.K. Dahle, and E. Boller: Acta Mater., 2010, vol. 58, pp. 20–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the program of the National Natural Science Foundation of China (NNSFC) (Contract No. 5097101) and the support from the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuang Island, China (Contract No. 201103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Additional information

Manuscript submitted April 28, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Ma, S.G. & Qiao, J.W. Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification. Metall Mater Trans A 43, 2625–2630 (2012). https://doi.org/10.1007/s11661-011-0981-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0981-8

Keywords

Navigation