Skip to main content
Log in

Development of high-strength WNbMoTaVZrx refractory high entropy alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, novel WNbMoTaVZrx (x = 0.1, 0.25, 0.5, 0.75, 1.0) refractory high entropy alloys (RHEAs) were developed, and the corresponding phase formation, microstructure and mechanical properties were investigated. As compared with the WNbMoTa and WNbMoTaV derivative alloys, the present WNbMoTaVZrx RHEAs demonstrated significantly improved strength and hardness, especially the specific yield strength. The increase of the strength was attributed to the solid solution strengthening effect, resulting from the severe lattice distortion associated with lager-atomic-sized Zr element. With the increase of Zr content, the microstructure changed from grain morphology to dendritic structures. The formation of the second phase with the increase of Zr content was also observed, and its effects on the strengthening, plastic deformation and fracture behaviors were discussed. The deformation-evolution investigations have shown that under applied loadings, microcracks initiated at interdendritic regions with relatively soft second phase. The phase thermostability analysis suggests that the phase structure of typical WNbMoTaVZrx RHEAs could be stable at elevated temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

No applicable.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  2. J.W. Yeh, Physical metallurgy of high-entropy alloys. JOM 67(10), 2254–2261 (2015)

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Article  CAS  Google Scholar 

  4. S. Ranganathan, Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 85(10), 1404–1406 (2003)

    Google Scholar 

  5. C. Xiang, H.M. Fu, Z.M. Zhang, E.H. Han, H.F. Zhang, J.Q. Wang, G.D. Hu, Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J. Alloys Compd. 818, 153352 (2020)

    Article  CAS  Google Scholar 

  6. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153–157 (2017)

    Article  CAS  Google Scholar 

  7. É. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys. Int. J. Refract. Met. H 47, 131–138 (2014)

    Article  CAS  Google Scholar 

  8. M. Wang, Z. Ma, Z. Xu, X. Cheng, Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. J. Alloys Compd. 803, 778–785 (2019)

    Article  CAS  Google Scholar 

  9. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76–83 (2015)

    Article  CAS  Google Scholar 

  10. T.E. Whitfield, H.J. Stone, C.N. Jones, N.G. Jones, Microstructural degradation of the AlMo0.5NbTa0.5TiZr refractory metal high-entropy superalloy at elevated temperatures. Entropy 23(1), 80 (2021)

    Article  CAS  Google Scholar 

  11. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5), 698–706 (2011)

    Article  CAS  Google Scholar 

  12. Y. Liu, Y. Zhang, H. Zhang, N. Wang, X. Chen, H. Zhang, Y. Li, Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloys Compd. 694, 869–876 (2017)

    Article  CAS  Google Scholar 

  13. B. Gorr, F. Müller, M. Azim, H.-J. Christ, T. Müller, H. Chen, A. Kauffmann, M. Heilmaier, High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition. Oxid. Met. 88(3–4), 339–349 (2017)

    Article  CAS  Google Scholar 

  14. Q. Fang, Y. Chen, J. Li, Y. Liu, Y. Liu, Microstructure and mechanical properties of FeCoCrNiNbX high-entropy alloy coatings. Physica B 550, 112–116 (2018)

    Article  CAS  Google Scholar 

  15. Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior tion. Mater. Chem. Phys. 92(1), 112–117 (2005)

    Article  CAS  Google Scholar 

  16. Y. Chen, T. Duval, U. Hung, J. Yeh, H. Shih, Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel. Corros. Sci. 47(9), 2257–2279 (2005)

    Article  CAS  Google Scholar 

  17. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys. Intermetallics 18(9), 1758–1765 (2010)

    Article  CAS  Google Scholar 

  18. Y.C. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Acta Metall. Sin. 55(2), 171–180 (2018)

    Google Scholar 

  19. Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 712, 380–385 (2018)

    Article  CAS  Google Scholar 

  20. Y. Tong, L. Bai, X. Liang, Y. Chen, Z. Zhang, J. Liu, Y. Li, Y. Hu, Influence of alloying elements on mechanical and electronic properties of NbMoTaWX (X= Cr, Zr, V, Hf and Re) refractory high entropy alloys. Intermetallics 126, 106928 (2020)

    Article  CAS  Google Scholar 

  21. J. Zhang, Y. Hu, Q. Wei, Y. Xiao, P. Chen, G. Luo, Q. Shen, Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders. J. Alloys Compd. 827, 154301 (2020)

    Article  CAS  Google Scholar 

  22. J. Chen, P. Niu, Y. Liu, Y. Lu, X. Wang, Y. Peng, J. Liu, Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94, 39–44 (2016)

    Article  CAS  Google Scholar 

  23. S.S.M. Pauzi, W. Darham, R. Ramli, M. Harun, M.K. Talari, Effect of Zr addition on microstructure and properties of FeCrNiMnCoZrx and Al0.5FeCrNiMnCoZrx high entropy alloys. Trans. Indian. Inst. Met. 66(4), 305–308 (2013)

    Article  CAS  Google Scholar 

  24. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534–538 (2008)

    Article  CAS  Google Scholar 

  25. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005)

    Article  CAS  Google Scholar 

  26. S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 103505 (2011)

    Article  CAS  Google Scholar 

  27. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012)

    Article  CAS  Google Scholar 

  28. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36(4), 881–893 (2005)

    Article  Google Scholar 

  29. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)

    Article  CAS  Google Scholar 

  30. Z.Q. Xu, Z.L. Ma, M. Wang, Y.W. Chen, Y.D. Tan, X.W. Cheng, Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A 755, 318–322 (2019)

    Article  CAS  Google Scholar 

  31. Y. Guo, H. Wang, Q. Liu, Microstructure evolution and strengthening mechanism of laser-cladding MoFeCrTiWAlNb refractory high-entropy alloy coatings. J. Alloys Compd. 834, 155147 (2020)

    Article  CAS  Google Scholar 

  32. D. Patel, M.D. Richardson, B. Jim, S. Akhmadaliev, R. Goodall, A.S. Gandy, Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04. J. Nucl. Mater. 531, 152005 (2020)

    Article  CAS  Google Scholar 

  33. Z. Sun, X. Li, Z. Wang, Microstructure and mechanical properties of low activation Fe–Ti–Cr–V–W multi-principal element alloys. J. Nucl. Mater. 533, 152078 (2020)

    Article  CAS  Google Scholar 

  34. W. Zhang, P.K. Liaw, Y. Zhang, A Novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy 20(12), 951 (2018)

    Article  CAS  Google Scholar 

  35. S.P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater. Sci. Eng. C 73, 80–89 (2017)

    Article  CAS  Google Scholar 

  36. H. Zhang, L. Zhang, X. Liu, Q. Chen, Y. Xu, Effect of Zr addition on the microstructure and mechanical properties of CoCrFeNiMn high-entropy alloy synthesized by spark plasma sintering. Entropy 20(11), 810 (2018)

    Article  CAS  Google Scholar 

  37. S. Gao, T. Kong, M. Zhang, X. Chen, Y. Sui, Y. Ren, J. Qi, F. Wei, Y. He, Q. Meng, Z. Sun, Effects of titanium addition on microstructure and mechanical properties of CrFeNiTi x (x = 0.2 0.6) compositionally complex alloys. J. Mater. Res. 34, 819–828 (2019)

    Article  CAS  Google Scholar 

  38. D.J.M. King, S.T.Y. Cheung, S.A. Humphry-Baker, C. Parkin, A. Couet, M.B. Cortie, G.R. Lumpkin, S.C. Middleburgh, A.J. Knowles, High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Mater. 166, 435–446 (2019)

    Article  CAS  Google Scholar 

  39. L. Wang, L. Wang, Y. Tang, L. Luo, L. Luo, Y. Su, J. Guo, H. Fu, Microstructure and mechanical properties of CoCrFeNiW high entropy alloys reinforced by μ phase particles. J. Alloys Compd. 843, 155997 (2020)

    Article  CAS  Google Scholar 

  40. O.N. Senkov, J. Gild, T.M. Butler, Microstructure, mechanical properties and oxidation behavior of NbTaTi and NbTaZr refractory alloys. J. Alloys Compd. 862, 158003 (2021)

    Article  CAS  Google Scholar 

  41. S.H. Chen, J.Y. Wang, L. Xia, Y.C. Wu, Deformation behavior of bulk metallic glasses and high entropy alloys under complex stress fields: a review. Entropy 21(1), 54 (2019)

    Article  CAS  Google Scholar 

  42. M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, S. Mukherjee, High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J. Alloys Compd. 843, 156004 (2020)

    Article  CAS  Google Scholar 

  43. Z. Niu, J. Xu, T. Wang, N. Wang, Z. Han, Y. Wang, Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW (x = 0, 0.2, 0.5) high entropy alloys. Intermetallics 112, 106550 (2019)

    Article  CAS  Google Scholar 

  44. T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propul. Power 22(2), 361–374 (2006)

    Article  CAS  Google Scholar 

  45. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd. 760, 15–30 (2018)

    Article  CAS  Google Scholar 

  46. S.H. Chen, K.C. Chan, F.F. Wu, L. Xia, Pronounced energy absorption capacity of cellular bulk metallic glasses. Appl. Phys. Lett. 104, 111907 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (No. 51801049) and the Fundamental Research Funds for the Central Universities of China (No. PA2019GDZC0096).

Author information

Authors and Affiliations

Authors

Contributions

No applicable.

Corresponding authors

Correspondence to S. H. Chen or Y. C. Wu.

Ethics declarations

Conflict of interest

The authors have no interest conflicts to declare in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, S.H., Wu, Z.W. et al. Development of high-strength WNbMoTaVZrx refractory high entropy alloys. Journal of Materials Research 37, 1664–1678 (2022). https://doi.org/10.1557/s43578-022-00569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00569-3

Keywords

Navigation