Skip to main content
Log in

Synthetic Radio Views of Simulated Solar Flux Ropes

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We produce synthetic radio views of simulated flux ropes in the solar corona, where finite-\(\upbeta\) magnetohydrodynamic (MHD) simulations serve to mimic the flux-rope formation stages, as well as their stable endstates. These endstates represent twisted flux ropes where balancing Lorentz forces, gravity, and pressure gradients determine the full thermodynamic variation throughout the flux rope. The models obtained are needed to quantify radiative transfer in radio bands, and they allow us to contrast weak with strong magnetic-field conditions. Field strengths of up to 100 G in the flux rope yield radio views dominated by optically thin free–free emission. The forming flux rope shows clear morphological changes in its emission structure as it deforms from an arcade to a flux rope, both on disk and at the limb. For an active-region filament channel with a field strength of up to 680 G in the flux rope, gyroresonance emission (from the third and fourth gyrolayers) can be detected, and it even dominates free–free emission at frequencies of up to 7 GHz. Finally, we also show synthetic views of a simulated filament embedded within a (weak-field) flux rope, resulting from an energetically consistent MHD simulation. For this filament, synthetic views at the limb show clear similarities with actual observations, and the transition from optically thick (below 10 GHz) to optically thin emission can be reproduced. On the disk, its dimension and temperature conditions are as yet not realistic enough to yield the observed radio-brightness depressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. More exactly, the cutoff frequency of the extraordinary mode slightly exceeds the plasma frequency. However, under the considered conditions this difference is negligible.

References

  • Abramov-Maximov, V.E., Borovik, V.N., Opeikina, L.V., Tlatov, A.G.: 2015, Dynamics of microwave sources associated with the neutral line and the magnetic-field parameters of sunspots as a factor in predicting large flares. Solar Phys. 290, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Akhmedov, S.B., Borovik, V.N., Gelfreikh, G.B., Bogod, V.M., Korzhavin, A.N., Petrov, Z.E., Dikij, V.N., Lang, K.R., Willson, R.F.: 1986, Structure of a solar active region from RATAN 600 and very large array observations. Astrophys. J. 301, 460. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Kundu, M.R.: 1982, Observations of ring structure in a sunspot associated source at 6 centimeter wavelength. Astrophys. J. Lett. 253, L49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Lubyshev, B.I., Smol’Kov, G.I., Krissinel’, B.B., Treskov, T.A., Miller, V.G., Kardapolova, N.N.: 1992, Two-dimensional solar mapping at 5.2 cm with the Siberian Solar Radio Telescope. Solar Phys. 142, 341. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Gel’Frejkh, G.B., Borovik, V.N., Korzhavin, A.N., Bogod, V.M., Nindos, A., Kundu, M.R.: 1993, Spectral observations of active region sources with RATAN-600 and WSRT. Astron. Astrophys. 270, 509. ADS .

    ADS  Google Scholar 

  • Alissandrakis, C.E., Kochanov, A.A., Patsourakos, S., Altyntsev, A.T., Lesovoi, S.V., Lesovoya, N.N.: 2013, Microwave and EUV observations of an erupting filament and associated flare and coronal mass ejections. Publ. Astron. Soc. Japan 65, 8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Mikic, Z., Linker, J.: 1999, Three-dimensional solutions of magnetohydrodynamic equations for prominence magnetic support: twisted magnetic flux rope. Astrophys. J. Lett. 518, L57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. Praxis Publishing Ltd., Chichester. ADS .

    Google Scholar 

  • Bakunina, I.A., Melnikov, V.F., Solov’ev, A.A., Abramov-Maximov, V.E.: 2015, Intersunspot microwave sources. Solar Phys. 290, 37. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bastian, T.S., Ewell, M.W. Jr., Zirin, H.: 1993, A study of solar prominences near \(\lambda=1\) millimeter. Astrophys. J. 418, 510. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogod, V.M., Kaltman, T.I., Yasnov, L.V.: 2012, On properties of microwave sources located above the neutral line of radial magnetic field. Astrophys. Bull. 67, 425. DOI . ADS .

    Article  ADS  Google Scholar 

  • Butz, M., Fuerst, E., Hirth, W., Kundu, M.R.: 1975, On the structure of filaments from centimeter and millimeter observations. Solar Phys. 45, 125. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chiuderi Drago, F., Alissandrakis, C.E., Bastian, T., Bocchialini, K., Harrison, R.A.: 2001, Joint EUV/radio observations of a solar filament. Solar Phys. 199, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chiuderi-Drago, F., Furst, E., Hirth, W., Lantos, P.: 1975, Limb brightening and dark features observed at 6 cm wavelength. Astron. Astrophys. 39, 429. ADS .

    ADS  Google Scholar 

  • Drago, F.C., Felli, M.: 1970, Radio maps of the Sun at \(\lambda= 1.95~\mbox{cm}\). Solar Phys. 14, 171. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dulk, G.A.: 1985, Radio emission from the Sun and stars. Annu. Rev. Astron. Astrophys. 23, 169. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fleishman, G.D., Kuznetsov, A.A.: 2010, Fast gyrosynchrotron codes. Astrophys. J. 721, 1127. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fleishman, G.D., Kuznetsov, A.A.: 2014, Theory of gyroresonance and free–free emissions from non-Maxwellian quasi-steady-state electron distributions. Astrophys. J. 781, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537, 503. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golubchina, O.A., Bogod, V.M., Korzhavin, A.N., Bursov, N.N., Tokhchukova, S.K.: 2008, Centimeter-wave radio emission of a high-latitude prominence. Astrophys. Bull. 63, 34. DOI . ADS .

    ADS  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y.: 1998, Coronal dimming associated with a giant prominence eruption. Astrophys. J. Lett. 498, L179. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S.: 2013, Obscuration of flare emission by an eruptive prominence. Publ. Astron. Soc. Japan 65, 11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y., Kundu, M.R., Enome, S., Lemen, J.R., Akioka, M., Lara, A.: 1997, Radio and X-ray studies of a coronal mass ejection associated with a very slow prominence eruption. Astrophys. J. 475, 348. ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. Astrophys. J. 586, 562. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan 58, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Meshalkina, N.S., Kochanov, A.A.: 2013, An updated view of solar eruptive flares and the development of shocks and CMEs: history of the 2006 December 13 GLE-productive extreme event. Publ. Astron. Soc. Japan 65, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys. 290, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hanaoka, Y., Shinkawa, T.: 1999, Heating of erupting prominences observed at 17 GHz. Astrophys. J. 510, 466. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hanaoka, Y., Kurokawa, H., Enome, S., Nakajima, H., Shibasaki, K., Nishio, M., Takano, T., Torii, C., Sekiguchi, H., Kawashima, S., Bushimata, T., Shinohara, N., Irimajiri, Y., Koshiishi, H., Shiomi, Y., Nakai, Y., Funakoshi, Y., Kitai, R., Ishiura, K., Kimura, G.: 1994, Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and \(\mathrm {H}(\upalpha)\). Publ. Astron. Soc. Japan 46, 205. ADS .

    ADS  Google Scholar 

  • Hirayama, T.: 1985, Modern observations of solar prominences. Solar Phys. 100, 415. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hori, K., Culhane, J.L.: 2002, Trajectories of microwave prominence eruptions. Astron. Astrophys. 382, 666. DOI . ADS .

    Article  ADS  Google Scholar 

  • Irimajiri, Y., Takano, T., Nakajima, H., Shibasaki, K., Hanaoka, Y., Ichimoto, K.: 1995, Simultaneous multifrequency observations of an eruptive prominence at millimeter wavelengths. Solar Phys. 156, 363. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaneko, T., Yokoyama, T.: 2015, Numerical study on in-situ prominence formation by radiative condensation in the solar corona. Astrophys. J. 806, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Keppens, R., Porth, O., Xia, C.: 2014, Interacting tilt and kink instabilities in repelling current channels. Astrophys. J. 795, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Keppens, R., Nool, M., Tóth, G., Goedbloed, J.P.: 2003, Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation. Comput. Phys. Commun. 153, 317. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Khangil’din, U.V.: 1964, Characteristics of solar active regions obtained from observations on millimeter wavelengths. Soviet Astron. 8, 234. ADS .

    ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T., Titov, V.S., Lionello, R., Linker, J.A., Liu, R., Liu, C., Wang, H.: 2014, Slow rise and partial eruption of a double-decker filament. II. A double flux rope model. Astrophys. J. 792, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Korzhavin, A.N., Bogod, V.M., Borovik, V.N., Gelfreikh, G.B., Makarov, V.I.: 1994, Coronal loops and prominences as observed with RATAN 600. Space Sci. Rev. 70, 193. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R.: 1970, Solar active regions at millimeter wavelengths. Solar Phys. 13, 348. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R.: 1972, Observations of prominences at 3.5 millimeter wavelength. Solar Phys. 25, 108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R.: 1985, High spatial resolution microwave observations of the Sun. Solar Phys. 100, 491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R., Alissandrakis, C.E.: 1984, Structure and polarization of active region microwave emission. Solar Phys. 94, 249. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R., McCullough, T.P.: 1972, Polarization of solar active regions at 9.5 mm wavelength. Solar Phys. 24, 133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R., Melozzi, M., Shevgaonkar, R.K.: 1986, A study of solar filaments from high resolution microwave observations. Astron. Astrophys. 167, 166. ADS .

    ADS  Google Scholar 

  • Kundu, M.R., Schmahl, E.J., Rao, A.P.: 1981, VLA observations of solar active regions at 6 CM wavelength. Astron. Astrophys. 94, 72. ADS .

    ADS  Google Scholar 

  • Kundu, M.R., Velusamy, T.: 1980, Observation with the VLA of a stationary loop structure on the Sun at 6 centimeter wavelength. Astrophys. J. Lett. 240, L63. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R., Alissandrakis, C.E., Bregman, J.D., Hin, A.C.: 1977, 6 centimeter observations of solar active regions with 6 sec resolution. Astrophys. J. 213, 278. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kundu, M.R., Fuerst, E., Hirth, W., Butz, M.: 1978, Multifrequency observations of solar filaments at centimeter wavelengths. Astron. Astrophys. 62, 431. ADS .

    ADS  Google Scholar 

  • Kundu, M.R., White, S.M., Garaimov, V.I., Manoharan, P.K., Subramanian, P., Ananthakrishnan, S., Janardhan, P.: 2004, Radio observations of rapid acceleration in a slow filament eruption/fast coronal mass ejection event. Astrophys. J. 607, 530. DOI . ADS .

    Article  ADS  Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., Kilper, G.: 2010, Physics of solar prominences: I – Spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243. DOI . ADS .

    Article  ADS  Google Scholar 

  • Landi, E., Chiuderi Drago, F.: 2008, The quiet-sun differential emission measure from radio and UV measurements. Astrophys. J. 675, 1629. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Mikić, Z., Linker, J.A., Amari, T.: 2002, Magnetic field topology in prominences. Astrophys. J. 581, 718. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., van Ballegooijen, A.A.: 2006, Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marqué, C.: 2004, Radio metric observations of quiescent filament cavities. Astrophys. J. 602, 1037. DOI . ADS .

    Article  ADS  Google Scholar 

  • Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parenti, S.: 2014, Solar prominences: observations. Living Rev. Solar Phys. 11, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pérez-León, J.E., Hiriart, D., Mendoza-Torres, J.E.: 2013, Millimeter and submillimeter counterparts of the 2009 September 26 solar prominence. Rev. Mex. Astron. Astrofís. 49, 3. ADS .

    ADS  Google Scholar 

  • Priest, E.R.: 2014, Prominences: conference summary and suggestions for the future. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) IAU Symposium 300, Cambridge University Press, Cambridge, 379. DOI . ADS .

    Google Scholar 

  • Rao, A.P., Kundu, M.R.: 1977, A study of filament transition sheath from radio observations. Solar Phys. 55, 161. DOI . ADS .

    Article  ADS  Google Scholar 

  • Raoult, A., Lantos, P., Fuerst, E.: 1979, Prominences at centimetric and millimetric wavelengths. I – Size and spectrum of the radio filaments. Solar Phys. 61, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saha, M.N.: 1920, LIII. Ionization in the solar chromosphere. Phil. Mag. 40(238), 472. DOI .

    Article  Google Scholar 

  • Schmahl, E.J., Bobrowsky, M., Kundu, M.R.: 1981, Observations of solar filaments at 8, 15, 22 and 43 GHz. Solar Phys. 71, 311. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shibasaki, K., Alissandrakis, C.E., Pohjolainen, S.: 2011, Radio emission of the quiet Sun and active regions (invited review). Solar Phys. 273, 309. DOI . ADS .

    Article  ADS  Google Scholar 

  • Strong, K.T., Alissandrakis, C.E., Kundu, M.R.: 1984, Interpretation of microwave active region structures using SMM soft X-ray observations. Astrophys. J. 277, 865. DOI . ADS .

    Article  ADS  Google Scholar 

  • Subramanian, P., Dere, K.P.: 2001, Source regions of coronal mass ejections. Astrophys. J. 561, 372. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sych, R.A., Uralov, A.M., Korzhavin, A.N.: 1993, Radio observations of compact solar sources located between sunspots. Solar Phys. 144, 59. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tandberg-Hanssen, E.: 1995, The Nature of Solar Prominences, Astrophys. Space Sci. Lib. 199. Kluwer, Dordrecht. ADS .

    Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Török, T., Chandra, R., Pariat, E., Démoulin, P., Schmieder, B., Aulanier, G., Linton, M.G., Mandrini, C.H.: 2011, Filament interaction modeled by flux rope reconnection. Astrophys. J. 728, 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Rudenko, G.V., Rudenko, I.G.: 2006, 17GHz neutral line associated sources: birth, motion, and projection effect. Publ. Astron. Soc. Japan 58, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Nakajima, H., Zandanov, V.G., Grechnev, V.V.: 2000, Current-sheet-associated radio sources and development of the magnetosphere of an active region revealed from 17 GHz and Yohkoh data. Solar Phys. 197, 275. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Lesovoi, S.V., Zandanov, V.G., Grechnev, V.V.: 2002, Dual-filament initiation of a coronal mass ejection: observations and model. Solar Phys. 208, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Rudenko, I.G., Nakajima, H.: 2008, Microwave neutral line associated source and a current sheet. Solar Phys. 249, 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • van der Holst, B., Keppens, R.: 2007, Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications. J. Comput. Phys. 226, 925. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Xia, C., Keppens, R., Guo, Y.: 2014, Three-dimensional prominence-hosting magnetic configurations: creating a helical magnetic flux rope. Astrophys. J. 780, 130. DOI . ADS .

    Article  ADS  Google Scholar 

  • Xia, C., Keppens, R., Antolin, P., Porth, O.: 2014, Simulating the in situ condensation process of solar prominences. Astrophys. J. Lett. 792, L38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yasnov, L.V.: 2014, On the nature of neutral-line-associated radio sources. Solar Phys. 289, 1215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V.: 1970, Radio Emission of the Sun and Planets, Pergamon, Oxford. ADS .

    Google Scholar 

  • Zirker, J.B.: 1989, Quiescent prominences. Solar Phys. 119, 341. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Russian Foundation of Basic Research (grants 14-02-91157 and 15-02-03717) and by a Marie Curie International Research Staff Exchange Scheme “Radiosun” (PEOPLE-2011-IRSES-295272). R. Keppens and C. Xia acknowledge support from the project GOA/2015/014 (KU Leuven), the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/08 CHARM), and the FWO. Part of the simulations used the VSC (Flemish Supercomputer Center) funded by the Hercules foundation and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.A., Keppens, R. & Xia, C. Synthetic Radio Views of Simulated Solar Flux Ropes. Sol Phys 291, 823–845 (2016). https://doi.org/10.1007/s11207-016-0865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0865-6

Keywords

Navigation