Skip to main content
Log in

Optical Recording of the Surface Plasma of Cylindrical Conductors in Strong Magnetic Fields

  • Published:
Russian Physics Journal Aims and scope

Results are presented of experiments on the explosion of aluminum and titanium conductors that were carried out on a multipurpose impulse generator (MIG) (current amplitude of 2 MA, current rise time of 100 ns) in magnetic fields up to 3 MG. The conductors consisted of two parts: a rod 3 mm in diameter and a tube with the same outer diameter and wall thickness of 250 μm. The surface plasma of the conductor was recorded with the help of an HSFC Pro high-speed optical camera. It has been shown that instabilities on the surface of material with high conductivity (aluminum) are formed later than on the surface of material with low conductivity (titanium). Instabilities appear on the surface of the tube earlier than on the surface of the rod and remain more pronounced over the course of the entire process for both conductor materials. The growth increments of the large-scale instabilities were determined and the mechanism of their formation was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Stygar, T. Awe, J. Bailey, et al., Phys. Rev. Special Topics: Accelerator Beams, 18, 110401 (2015).

    ADS  Google Scholar 

  2. A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, et al., Phys. Rev. STAB, 12, 050402 (2009).

    ADS  Google Scholar 

  3. E. Azizov, S. Alikhanov, E. Velikhov, et al., Plasma Devices Oper., 12,123–132 (2004).

    Article  Google Scholar 

  4. S. Slutz, C. Olson, and P. Peterson, Phys. Plasmas, 10, 429–437 (2003).

    Article  ADS  Google Scholar 

  5. E. V. Grabovskii, V. V. Aleksandrov, A. N. Gritsuk, et al., in: Abstracts IEEE Pulsed Power and Plasma Science Conf., San Francisco (2013), p. 224.

  6. K. Struve, J. Corley, D. Johnson, et al., in: Digest of Technical Papers of the 12th IEEE Int. Pulsed Power Conf., Vol. 1, Monterey (1999), p. 493.

  7. V. P. Smirnov, S. V. Zakharov, E. V. Grabovskii, et al., J. Exp. Theor. Phys. Lett., 81, 442–447 (2006).

    Article  Google Scholar 

  8. V. Mokhov, O. Burenkov, A. Buyko, et al., Fusion Eng. Design, 70, 35–43 (2004).

    Article  Google Scholar 

  9. I. R. Lindemuth, Phys. Plasmas, 22, 122712 (2015).

    Article  ADS  Google Scholar 

  10. S. Slutz, M. Herrmann, R. Vesey, et al., Phys. Plasmas, 17, 056303 (2010).

    Article  ADS  Google Scholar 

  11. M. R. Gomez, S. A. Slutz, A. B. Sefkow, et al., Phys. Rev. Lett., 113, 155003 (2014).

    Article  ADS  Google Scholar 

  12. K. J. Peterson, E. P. Yu, D. B. Sinars, et al., Phys. Plasmas, 20, 056305 (2013).

    Article  ADS  Google Scholar 

  13. S. A. Chaikovsky, V. I. Oreshkin, et al., Phys. Plasmas, 21, 042706 (2014).

    Article  ADS  Google Scholar 

  14. K. C. Yates, B. S. Bauer, S. Fuelling, et al., Phys. Plasmas, 26, 042708 (2019).

    Article  ADS  Google Scholar 

  15. H. Knoepfel, Pulsed High Magnetic Fields, North-Holland, Amsterdam (1970).

    Google Scholar 

  16. S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Zh. Tekh. Fiz., 67, No. 4, 32 (1997).

    Google Scholar 

  17. G. Shneerson, Sov. Phys. Tech. Phys., 18, 419 (1973).

    Google Scholar 

  18. S. A. Chaikovsky, V. I. Oreshkin, I. M. Datsko, et al., Phys. Plasmas, 22, 112704 (2015).

    Article  ADS  Google Scholar 

  19. A. V. Luchinskii, N. A. Ratakhin, V. F. Fedushchak, and A. N. Shepelev, Russ. Phys. J., 40, No. 12, 1178–1184 (1997).

    Article  Google Scholar 

  20. V. K. Petin, S. V. Shljakhtun, V. I. Oreshkin, and N. A. Ratakhin, Tech. Phys., 53, 776–782 (2008).

    Article  Google Scholar 

  21. V. I. Oreshkin, S. A. Chaikovsky, I. M. Datsko, et al., Phys. Plasmas, 23, 122107 (2016).

    Article  ADS  Google Scholar 

  22. T. J. Awe, E. P. Yu, K. C. Yates, et al., IEEE Trans. Plasma Sci., 45, No 4, 584–589 (2017).

    Article  ADS  Google Scholar 

  23. B. B. Kadomtsev, Collective Phenomena in Plasma [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  24. B. B. Kadomtsev, Reviews of Plasma Physics, Vol. 2, M. A. Leontovich, ed., Consultants Bureau, New York (1980).

  25. M. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York (1973).

    Book  Google Scholar 

  26. A. A. Ivanov, Physics of Highly Nonequilibrium Plasma [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Labetskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 124–129, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labetskaya, N.A., Oreshkin, V.I., Chaikovsky, S.A. et al. Optical Recording of the Surface Plasma of Cylindrical Conductors in Strong Magnetic Fields. Russ Phys J 62, 1228–1234 (2019). https://doi.org/10.1007/s11182-019-01839-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01839-0

Keywords

Navigation