Skip to main content
Log in

Anode Plasma Formation at the Initial Stage of a Nanosecond Air Discharge

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The initial stage of a nanosecond discharge in gaps with a high electric field at a cathode is studied by laser methods (interferometric, shadow, schlieren methods). The studies are performed in air at atmospheric pressure. Prominence is given to studying the evolution (appearance and growth) of the plasma channels at an anode and to estimating their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Perminov and A. A. Tren’kin, Tech. Phys. 50, 1158 (2005).

    Article  Google Scholar 

  2. A. G. Rep’ev, P. B. Repin, and V. S. Pokrovski, Tech. Phys. 52, 52 (2007).

    Article  Google Scholar 

  3. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (Nauka, Moscow, 1991; Uro-Press, Yekateriburg, 1998).

    Google Scholar 

  4. Yu. D. Korolev, V. A. Kuz’min, G. A. Mesyats, and V. P. Rotshtein, Sov. Tech. Phys. 24, 236 (1979).

    Google Scholar 

  5. Yu. D. Korolev, V. A. Kuz’min, and G. A. Mesyats, Zh. Tekh. Fiz. 50, 4 (1980).

    Google Scholar 

  6. A. N. Zaidel’ and G. V. Ostrovskaya, Laser Methods of Plasma Research (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  7. E. V. Parkevich, S. I. Tkachenko, A. V. Agafonov, A. R. Mingaleev, V. M. Romanova, T. A. Shelkovenko, and S. A. Pikuz, J. Exp. Theor. Phys. 124, 531 (2017).

    Article  ADS  Google Scholar 

  8. E. V. Parkevich, Instrum. Exp. Tech. 60, 383 (2017).

    Article  Google Scholar 

  9. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics, Part 2 (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  10. A. I. Khirianova and S. I. Tkachenko, in Proceedings of the 60th Conference of Mosc. Phys. Tech. Inst. with International Participation, Nov. 20–25, 2017 (Dolgoprudnyi, 2017).

    Google Scholar 

  11. V. R. Kukhta, V. V. Lopatin, and P. G. Petrov, Opt. Spectrosc. 56, 1 (1984).

    Google Scholar 

  12. S. A. Pikuz, V. M. Romanova, N. V. Baryshnikov, Min Hu, B. R. Kusse, D. B. Sinars, T. A. Shelkovenko, and D. A. Hammer, Rev. Sci. Instrum. 72, 1098 (2001).

    Article  ADS  Google Scholar 

  13. S. I. Tkachenko, A. R. Mingaleev, S. A. Pikuz, V.M. Romanova, T. A. Khattatov, T. A. Shelkovenko, O. G. Ol’khovskaya, V. A. Gasilov, and Yu. G. Kalinin, Plasma Phys. Rep. 38, 1 (2012).

    Article  ADS  Google Scholar 

  14. V. P. Tarakanov, User’s Manual for Code KARAT (Bercley Research Assoc., Springfield, VA, 1992).

    Google Scholar 

  15. D. I. Proskurovskii, Emission Electronics, the School-Book for Higher School (Tomsk. Gos. Univ., Tomsk, 2010) [in Russian].

    Google Scholar 

  16. R. M. van der Horst, T. Verreycken, E. M. van Veldhuizen, and P. J. Bruggeman, J. Phys. D: Appl. Phys. 45, 34 (2012).

    Google Scholar 

  17. S. A. Shcherbanev, A. Yu. Khomenko, S. A. Stepanyan, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 26, 2 (2016).

    Article  Google Scholar 

  18. A. Lo, A. Cessou, C. Lacour, B. Lecordier, P. Boubert, D. A. Xu, C. O. Laux, and P. Vervisch, Plasma Sources Sci. Technol. 26, 4 (2017).

    Article  Google Scholar 

  19. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1992).

    Book  Google Scholar 

  20. Yu. D. Korolev, G. A. Mesyats, and A. P. Khuzeev, Dokl. Akad. Nauk SSSR 253, 3 (1980).

    Google Scholar 

  21. Physical Material Science, The School-Book for Higher School, in 6 Vols., Ed. by B. A. Kalin (Mosk. Inzh. Fiz. Inst., Moscow, 2007) [in Russian].

    Google Scholar 

  22. G. A. Vorob’ev, Yu. P. Pokholkov, Yu. D. Korolev, and V. I. Merkulov, Physics of Dielectrics (Strong Field Area) (Tomsk. Politekh. Univ., Tomsk, 2003) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Parkevich.

Additional information

Original Russian Text © E.V. Parkevich, A.I. Khirianova, A.V. Agavonov, S.I. Tkachenko, A.R. Mingaleev, T.A. Shelkovenko, A.V. Oginov, S.A. Pikuz, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 3, pp. 504–513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkevich, E.V., Khirianova, A.I., Agavonov, A.V. et al. Anode Plasma Formation at the Initial Stage of a Nanosecond Air Discharge. J. Exp. Theor. Phys. 126, 422–429 (2018). https://doi.org/10.1134/S1063776118030160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118030160

Navigation