Skip to main content
Log in

Bioactive silicon-iron-containing glycerohydrogel synthesized by the sol—gel method in the presence of chitosan

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A novel biologically active nanocomposite glycerohydrogel based on two biocompatible precursors, silicon and iron glycerolates, was synthesized by the sol—gel method in the presence of chitosan (Ch). The composition and structural features of the gel were characterized by advanced analytical methods including transmission electron microscopy, X-ray diffraction, and atomic emission spectroscopy. It was shown that iron(iii) monoglycerolate undergoes partial hydrolysis under the gelation conditions and exists as a separate nanoscale phase along with the hydrolysis products in cells of the 3D Si-containing polymeric gel network. This network is formed as a result of incomplete hydrolysis of silicon glycerolates in excess glycerol followed by homo- and heterofunctional condensation of silanol groups with the formation of Si-O-Si units containing residual glyceroxy groups at the silicon atom. Chitosan forms numerous intermolecular bonds with the 3D gel network, accelerates the process of gelation, makes the gel morphostructure more ordered, and increases the stability of the gel. The Si-Fe-Ch-containing glycerohydrogel is nontoxic and possesses hemostatic and wound-healing activity, being a promising topical medication for medical and veterinary practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Khonina, E. V. Shadrina, A. A. Boyko, O. N. Chupakhin, L. P. Larionov, A. A. Volkov, V. D. Burda, Russ. Chem. Bull., 2010, 59, 75; DOI: https://doi.org/10.1007/s11172-010-0047-x.

    Article  CAS  Google Scholar 

  2. O. N. Chupakhin, T. G. Khonina, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, E. V. Shadrina, E. Yu. Larchenko, L. P. Larionov, M. S. Karabanalov, Russ. Chem. Bull., 2017, 66, 558; DOI: https://doi.org/10.1007/s11172-017-1771-2.

    Article  CAS  Google Scholar 

  3. T. G. Khonina, M. V. Ivanenko, O. N. Chupakhin, A. P. Safronov, E. A. Bogdanova, M. S. Karabanalov, V. V. Permikin, L. P. Larionov, L. I. Drozdova, Eur. J. Pharm. Sci., 2017, 107, 197; DOI: https://doi.org/10.1016/j.ejps.2017.07.012.

    Article  CAS  Google Scholar 

  4. T. G. Khonina, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, E. V. Shadrina, E. Yu. Nikitina, V. V. Permikin, O. N. Chupakhin, J. Sol—Gel Sci. Technol., 2020, 95, 682; DOI: https://doi.org/10.1007/s10971-020-05328-6.

    Article  CAS  Google Scholar 

  5. A. B. Shipovskaya, T. G. Khonina, Yu. Yu. Zhuravleva, O. N. Malinkina, N. O. Gegel, M. V. Ivanenko, I. V. Zudina, E. V. Shadrina, E. Yu. Larchenko, in Adv. Chem. Res., Ed. J. C. Taylor, Nova Science Publishers, Inc., New York, 2020, 63, Ch. 1, p. 1.

  6. M. A. Brook, Y. Chen, K. Guo, Z. Zhang, J. D. Brennan, J. Mater. Chem., 2004, 14, 1469; DOI: https://doi.org/10.1039/b401278j.

    Article  CAS  Google Scholar 

  7. D. Brandhuber, V. Torma, C. Raab, H. Peterlik, A. Kulak, N. Hüsing, J. Mater. Chem., 2005, 17, 4262; DOI: https://doi.org/10.1021/cm048483j.

    Article  CAS  Google Scholar 

  8. Yu. A. Shchipunov, T. Yu. Karpenko, A. V. Krekoten, I. V. Postnova, J. Colloid Interface Sci., 2005, 287, 373; DOI: https://doi.org/10.1016/j.jcis.2005.02.004.

    Article  CAS  Google Scholar 

  9. T. G. Khonina, A. P. Safronov, E. V. Shadrina, M. V. Ivanenko, A. I. Suvorova, O. N. Chupakhin, J. Colloid Interface Sci., 2012, 81, 365; DOI: https://doi.org/10.1016/j.jcis.2011.09.018.

    Google Scholar 

  10. T. G. Khonina, E. Yu. Nikitina, E. V. Shadrina, N. P. Evstigneeva, M. M. Kokhan, I. N. Ganebnykh, M. S. Karabanalov, D. K. Kuznetsov, M. S. Valova, O. N. Chupakhin, Russ. Chem. Bull., 2021, 70, 967; DOI: https://doi.org/10.1007/s11172-021-3174-7.

    Article  CAS  Google Scholar 

  11. T. G. Khonina, D. S. Tishin, L. P. Larionov, A. V. Osipenko, M. N. Dobrinskaya, E. A. Bogdanova, M. S. Karabanalov, E. Yu. Nikitina, E. V. Shadrina, V. V. Permikin, N. M. Starikov, O. N. Chupakhin. J. Sol—Gel Sci. Technol., 2023, 105, No. 3.

  12. T. G. Khonina, E. Yu. Nikitina, A. Yu. Germov, B. Yu. Goloborodsky, K. N. Mikhalev, E. A. Bogdanova, D. S. Tishin, A. M. Demin, V. P. Krasnov, O. N. Chupakhin, V. N. Charushin, RSC Adv., 2022, 12, 4042; DOI: https://doi.org/10.1039/D1RA08485B.

    Article  CAS  Google Scholar 

  13. E. W. Radoslovich, M. Raupach, P. G. Slade, R. M. Taylor, Aust. J. Chem., 1970, 23, 1963; DOI: https://doi.org/10.1071/CH9701963.

    Article  CAS  Google Scholar 

  14. P. F. Fuls, L. Rodrique, J. J. Fripiat, Clays Clay Miner., 1970, 18, 53; DOI: https://doi.org/10.1346/CCMN.1970.0180107.

    Article  CAS  Google Scholar 

  15. L. Rodrique, G. Delvaux, A. Dardenne, Powder Technol., 1978, 19, 93; DOI: https://doi.org/10.1016/0032-5910(78)80076-X.

    Article  CAS  Google Scholar 

  16. P. Bruylants, A. Munaut, G. Poncelet, J. Ladriere, J. Meyers, J. Fripiat, J. Inorg. Nucl. Chem., 1980, 42, 1603; DOI: https://doi.org/10.1016/0022-1902(80)80324-1.

    Article  CAS  Google Scholar 

  17. V. Bartůněk, D. Průcha, M. Švecová, P. Ulbrich, S. Huber, D. Sedmidubský, O. Jankovský, Mater. Chem. Phys., 2016, 180, 272; DOI: https://doi.org/10.1016/j.matchemphys.2016.06.007.

    Article  Google Scholar 

  18. M. T. Matter, F. Starsich, M. Galli, M. Hilber, A. A. Schlegel, S. Bertazzo, S. E. Pratsinis, I. K. Herrmann, Nanoscale, 2017, 9, 8418; DOI: https://doi.org/10.1039/c7nr01176h.

    Article  CAS  Google Scholar 

  19. M. Bandi, S. K. Mallineni, S. Nuvvula, J. Conserv. Dent., 2017, 20, 278; DOI: https://doi.org/10.4103/JCD.JCD_259_16.

    Article  CAS  Google Scholar 

  20. E. M. Shabanova, A. S. Drozdov, A. F. Fakhardo, I. P. Dudanov, M. S. Kovalchuk, V. V. Vinogradov, Sci. Rep., 2018, 8, 233; DOI: https://doi.org/10.1038/s41598-017-18665-4.

    Article  Google Scholar 

  21. H. D. N. Tran, S. S. Moonshi, Z. P. Xu, H. T. Ta, Biomater. Sci., 2022, 10, 10; DOI: https://doi.org/10.1039/D1BM01351C.

    Article  CAS  Google Scholar 

  22. C. C. Cothren, E. E. Moore, H. B. Hedegaard, World J. Surg., 2007, 31, 1507; DOI: https://doi.org/10.1007/s00268-007-9087-2.

    Article  Google Scholar 

  23. H. Khoshmohabat, S. Paydar, H. M. Kazemi, Trauma Mon., 2016, 21, 1; DOI: https://doi.org/10.5812/traumamon.26023.

    Google Scholar 

  24. E. Yu. Larchenko, T. G. Khonina, E. V. Shadrina, A. V. Pestov, O. N. Chupakhin, N. V. Menshutina, A. E. Lebedev, D. D. Lovskaya, L. P. Larionov, S. A. Chigvintsev, Russ. Chem. Bull., 2014, 63, 1225; DOI: https://doi.org/10.1007/s11172-014-0578-7.

    Article  CAS  Google Scholar 

  25. E. V. Shadrina, O. N. Malinkina, T. G. Khonina, A. B. Shipovskaya, V. I. Fomina, E. Yu. Larchenko, N. A. Popova, I. G. Zyryanova, L. P. Larionov, Russ. Chem. Bull., 2015, 64, 1633; DOI: https://doi.org/10.1007/s11172-015-1053-9.

    Article  CAS  Google Scholar 

  26. A. Matica, F. L. Aachmann, A. Tøndervik, H. Sletta, V. Ostafe, Int. J. Mol. Sci., 2019, 20, 5889; DOI: https://doi.org/10.3390/ijms20235889.

    Article  CAS  Google Scholar 

  27. V. Deineka, O. Sulaieva, N. Pernakov, J. Radwan-Pragłowska, L. Janus, V. Korniienko, Ye. Husak, A. Yanovska, I. Liubchak, A. Yusupova, M. Piątkowski, A. Zlatska, M. Pogorielov, Mater. Sci. Eng. C, 2021, 120, 111740; DOI: https://doi.org/10.1016/j.msec.2020.111740.

    Article  CAS  Google Scholar 

  28. J. C. V. Ribeiro, T. C. M. Forte, S. J. S. Tavares, F. K. Andrade, R. S. Vieira, V. Lima, J. Biomed. Mater. Res. A, 2021, 109, 2556; DOI: https://doi.org/10.1002/jbm.a.37250.

    Article  CAS  Google Scholar 

  29. Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv [Guidelines for Preclinical Trials of Medicinal Products], Ed. A. N. Mironov, Ch. 1, Grif i K, Moscow, 2012, 944 pp. (in Russian).

    Google Scholar 

  30. H. Demirel, O. T. Basar, A. U. Ongoren, E. Bavram, M. Kisakurek, World J. Gastroenterol., 2008, 14(1), 81; DOI: https://doi.org/10.3748/wjg.14.81.

    Article  Google Scholar 

  31. J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, K. M. Paknikar, Mol. Pharmaceutics, 2009, 6, 1388; DOI: https://doi.org/10.1021/mp900056g.

    Article  CAS  Google Scholar 

  32. M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal., 2016, 6, 71; DOI: https://doi.org/10.1016/j.jpha.2015.11.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Khonina.

Additional information

This work was carried out under the financial support from the Russian Science Foundation (Project No. 22-23-20032) and from the Government of the Sverdlovsk Region using the equipment of the “Modern Nanotechnologies” Center for Joint Use at the Ural Federal University and the “Spectroscopy and Analysis of Organic Compounds” Center for Joint Use at the I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences. Powder X-ray diffraction and electron microscopy studies were carried out within the framework of the State Programs of the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences and the Ural Federal University, respectively.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the V Russian Conference on Medicinal Chemistry with international participation “MedChem-Russia 2021” (May 16–19, 2022, Volgograd, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2342–2351, November, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, T.G., Tishin, D.S., Larionov, L.P. et al. Bioactive silicon-iron-containing glycerohydrogel synthesized by the sol—gel method in the presence of chitosan. Russ Chem Bull 71, 2342–2351 (2022). https://doi.org/10.1007/s11172-022-3661-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3661-5

Key words

Navigation