Skip to main content
Log in

Influence of mechanochemical and microwave treatment of tin dioxide on porous structure and gas-sensitive properties of SnO2-based sensor nanomaterials

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Microwave and mechanochemical treatments were used to obtain mesoporous or meso-macroporous structure of tin nanomaterials based on tin dioxide, including with cobalt additive. Samples modified using such techniques have been studied via XRD, TEM, XPS methods, and nitrogen adsorption/desorption. It has been established that calcination of modified samples at 450–620 °C results in formation of well-crystallized structure of cassiterite. Average particle and crystallite size which calculated using Sherrer formula and TEM data are 5–10 and 9–18 nm, respectively. The sample after microwave treatment has the most thermostable porous structure: the value of specific surface area is maximal for this sample after annealing at 620 °C. Therefore, microwave treatment of wet tin dioxide gel turned out to be the most promising for creating more sensitive semiconductor sensors to hydrogen in the range of its concentrations in air of 40–1000 ppm. In particular, Co-containing sensors based on microwave-modified tin dioxide have the highest sensitivity to hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

modified by the addition of catalysts in the atmosphere of the analyzed gas

Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The present research results have not been published before. Data and Materials are all in the main text, figures, and tables.

References

  1. S. Lu, Y. Zhang, J. Liu, H.-Y. Li, Z. Hu, X. Luo, N. Gao, B. Zhang, J. Jiang, A. Zhong, J. Luo, H. Liu, Sens. Actuators B Chem. 21, 3947 (2021).

    Google Scholar 

  2. G. Fedorenko, L. Oleksenko, N. Maksymovych, Adv. Mater. Sci. Eng. 7 (2019).

  3. H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, F. Guo, D. Chen, R. Zhang, Y. Zheng, Sens. Actuators B Chem. 331 (2021).

  4. M. Tonezzer, Sens. Actuators B Chem. 288, 53 (2019).

    Article  CAS  Google Scholar 

  5. G. Fedorenko, L. Oleksenko, N. Maksymovych, I. Vasylenko, J. Mater. Sci. 55(1) (2020).

  6. A. Dey, Mater. Sci. Eng. B. 229, 206 (2018).

    Article  CAS  Google Scholar 

  7. A. Benvidi, M. Karimi, S. Mansour Bidoki, M. Zarchi, S. Dalirnasab, M. Tezerjani, A. Behjat, Res. Chem. Intermed. 47, 4803 (2021).

    Article  CAS  Google Scholar 

  8. A.M. Al-Hamdi, M. Sillanpää, T. Bora, J. Dutta, Appl. Surf. Sci. 370, 229 (2016).

    Article  CAS  Google Scholar 

  9. X. Li, K. Peng, Y. Dou, J. Chen, Y. Zhang, G. An, Nanoscale Res. Lett. 13, 14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 28, 795 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. R. Leboda, B. Charmas, V. Sidorchuk, Adsorp Sci. Technol. 15, 189 (1997).

    Article  CAS  Google Scholar 

  12. G. Yang, S.-J. Park, Materials 12, 1177 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  13. J. Skubiszewska-Zięba, Adsorption 16, 485 (2010).

    Article  CAS  Google Scholar 

  14. K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007).

    Article  CAS  Google Scholar 

  15. V. Boldyrev, Powder Technol. 122, 247 (2002).

    Article  CAS  Google Scholar 

  16. J. Skubiszewska-Ziéba, S. Khalameida, V. Sydorchuk, Colloids Surf. A Physicochem. Eng. Asp. 504, 139 (2016).

    Article  CAS  Google Scholar 

  17. G.J. Wilson, G.D. Will, R.L. Frost, S.A. Montgomery, J. Mater. Chem. 12, 1787 (2002).

    Article  CAS  Google Scholar 

  18. C.J. Gommes, Nanoscale 11, 7386 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. S. Komarneni, R. Roy, Q. Li, Mater. Res. Bull. 27, 1393 (1992).

    Article  CAS  Google Scholar 

  20. H. Rojas-Chávez, H. Cruz-Martínez, E. Flores-Rojas, J.M. Juárez-García, J.L. González-Domínguez, N. Daneu, J. Santoyo-Salazar, Phys. Chem. Chem. Phys. 20, 27082 (2018).

    Article  PubMed  Google Scholar 

  21. M. Samsonenko, O. Zakutevskyy, S. Khalameida, B. Charmas, J. Skubiszewska-Ziba, Adsorption 25, 451 (2019).

    Article  CAS  Google Scholar 

  22. L.M. Cukrov, P.G. McCormick, K. Galatsis, W. Wlodarski, Sens. Actuators B Chem. 77, 491 (2001).

    Article  CAS  Google Scholar 

  23. A. Cirera, A. Vilà, A. Dieguez, A. Cabot, A. Cornet, J.R. Morante, Sens. Actuators B Chem. 64, 65 (2000).

    Article  CAS  Google Scholar 

  24. D.S. Torkhov, A.A. Burukhin, B.R. Churagulov, M.N. Rumyantseva, V.D. Maksimov, Inorg. Mater. 39, 1158 (2003).

    Article  CAS  Google Scholar 

  25. G. Li, X.-H. Zhang, S. Kawi, Sens. Actuators B Chem. 60, 64 (1999).

    Article  CAS  Google Scholar 

  26. M. Najjar, H. Hosseini, A. Masoudi, A. Hashemzadeh, M. Darroudi, Res. Chem. Intermed. 46, 2155 (2020).

  27. J.N.B. Bell, S.L. Honour, S.A. Power, Environ. Pollut. 159, 1984 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. S.B. Naghadeh, S. Vahdatifar, Y. Mortazavi, A.A. Khodadadi, A. Abbasi, Sens. Actuators B Chem. 223, 252 (2016).

    Article  CAS  Google Scholar 

  29. S. Khalameida, M. Samsonenko, J. Skubiszewska-Zięba, O. Zakutevskyy, Adsorp. Sci. Technol. 35, 853 (2017).

    Article  CAS  Google Scholar 

  30. H. Rojas-Chávez, O.E. Cigarroa-Mayorga, J.L. González-Domínguez, N. Cayetano-Castro, M.M. Tellez-Cruz, J.A. Andraca-Adame, M.L. Mondragón-Sánchez, Mater. Res. Express 5, 076514 (2018).

    Article  CAS  Google Scholar 

  31. S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, J. Mol. Catal. A. 28, 49 (2008).

    Article  CAS  Google Scholar 

  32. M.A. Stranick, A. Moskwa, Surf. Sci. Spectra 2, 50 (1993).

    Article  CAS  Google Scholar 

  33. L.P. Oleksenko, G.V. Fedorenko, N.P. Maksymovych, Theor. Exp. Chem. 53, 259 (2017).

    Article  CAS  Google Scholar 

  34. E.V. Sokovyh, L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, Nanoscale Res. Lett. 12, 383 (2017).

    Article  CAS  Google Scholar 

  35. L.P. Oleksenko, G.V. Fedorenko, N.P. Maksymovych, I.P. Matushko, Func. Mater. 25, 741 (2018)

    Article  CAS  Google Scholar 

  36. L.P. Oleksenko, N.P. Maksymovych, E.V. Sokovykh, I.P. Matushko, A.I. Buvailo, N. Dollahon, Sens. Actuators B Chem. 196, 298 (2014).

    Article  CAS  Google Scholar 

  37. G.V. Fedorenko, L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, Russ. J. Phys. Chem. A. 89, 2259 (2015).

    Article  CAS  Google Scholar 

  38. M. Thommes, Chem. Int. 38, 25 (2016).

    Article  Google Scholar 

  39. K. Lu, W. Li, B. Chen, Eng. Mater. 35, 115 (2013).

    Article  Google Scholar 

  40. A. Azarniya, A. Azarniya, M. Safavi, M. Ahmadipour, M. Seraji, S. Sovizi, M. Reddy, Crit. Rev. Solid State Mater. Sci. 45, 22 (2020).

    Article  CAS  Google Scholar 

  41. I. Prochazka, J. Cizek, O. Melikhova, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Diff. Found. 1, 155 (2014).

    Article  Google Scholar 

  42. F. Lemke, W. Rheinheimer, M.J. Hoffmann, J. Ceram. Soc. Jpn. 124, 346 (2016).

    Article  CAS  Google Scholar 

  43. H. Rojas-Chávez, F. Reyes-Carmona, V. Garibay-Febles, D. Jaramillo-Vigueras, J. Nanopart. Res. 15, 1623 (2013).

    Article  CAS  Google Scholar 

  44. H. Rojas-Chávez, A. Miralrio, H. Cruz-Martínez, G. Carbajal-Franco, M.A. Valdés-Madrigal, Inorg. Chem. 60, 7196 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, A.I. Buvailo, N.M. Derkachenko, Russ. J. Phys. Chem. A 87, 265 (2013).

    Article  CAS  Google Scholar 

  46. A. Rothschild, Y. Komem, J. Appl. Phys. 95, 6374 (2004).

    Article  CAS  Google Scholar 

  47. G. Sarala Devi, S.K. Masthan, M. Shakuntalav, J. Rao, J. Mater. Sci. Mater. Electron. 10, 545 (1999).

    Article  Google Scholar 

  48. S. Seal, S. Shukla, J. Min. Met. Mater. Soc. 54, 35 (2002).

    Article  CAS  Google Scholar 

  49. G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will, Langmuir 22, 2016 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. M. Lin, Z.Y. Fu, H.R. Tan, J.P.Y. Tan, S.C. Ng, E. Teo, Cryst. Growth Des. 12, 3296 (2012).

    Article  CAS  Google Scholar 

  51. A. Datye, Q. Xu, K. Kharas, J. McCarty, Catal. Today 111, 59 (2006).

    Article  CAS  Google Scholar 

  52. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon Press, Oxford, 2004)

    Google Scholar 

  53. S.H. Faria, Proc. R. Soc. A 462, 1493 (2006).

    Article  Google Scholar 

  54. V. Sydorchuk, O. Poddubnaya, M. Tsyba, O. Zakytevskyy, O. Khyzhun, S. Khalameida, A. Puziy, Adsorption 25, 267 (2019).

    Article  CAS  Google Scholar 

  55. S. Malvankar, S. Doke, R. Gahlaut, E. Martinez-Teran, A.A. El-Gendy, U. Deshpande, S. Mahamuni, J. Electron. Mater. 49, 1872 (2020).

    Article  CAS  Google Scholar 

  56. L. Lukashuk, N. Yigit, R. Rameshan, E. Kolar, D. Teschner, M. Hävecker, G. Rupprechter, ACS Catal. 8, 8630 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. Roy, A.G. Joshi, S. Chatterjee, A.K. Ghosh, Nanoscale 10, 10664 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. L. Oleksenko, G. Fedorenko, N. Maksymovych, Theor. Exp. Chem. 55, 132 (2019).

    Article  CAS  Google Scholar 

  59. L. Oleksenko, G. Fedorenko, N. Maksymovych, Res. Chem. Intermed. 45, 4101 (2019).

    Article  CAS  Google Scholar 

  60. T. Kawabe, K. Tabata, E. Suzuki, Y. Yamaguchi, Y. Nagasawa, Phys. Chem. B 105, 4239 (2001).

    Article  CAS  Google Scholar 

  61. L.Y. Kupriyanov, Semiconductor Sensors in Physico-Chemical Studies (Elsevier, Amsterdam, 1996)

    Google Scholar 

  62. K.E. Geckeler, E. Rosenberg, Functional Nanomaterials (American Scientific Publishers, Valencia, 2006), p. 515

    Google Scholar 

  63. L. Oleksenko, L. Lutsenko, Russ. J. Phys. Chem. A. 87, 180 (2013).

    Article  CAS  Google Scholar 

  64. A. Buvailo, L. Oleksenko, N. Maksimovich, V. Ruchko, Theor. Exp. Chem. 46, 153 (2010).

    Article  CAS  Google Scholar 

  65. L.P. Oleksenko, N.P. Maksymovych, E.V. Sokovykh, I.P. Matushko, Theor. Exp. Chem. 50, 115 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khalameida.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor’s Note: We requested the author to improve the quality of Fig. 3, however, due to the war in Ukraine they were unable to improve the figure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalameida, S., Matushko, I., Samsonenko, M. et al. Influence of mechanochemical and microwave treatment of tin dioxide on porous structure and gas-sensitive properties of SnO2-based sensor nanomaterials. Res Chem Intermed 48, 2279–2294 (2022). https://doi.org/10.1007/s11164-022-04684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04684-y

Keywords

Navigation