Skip to main content
Log in

Preparation of porous indium tin oxide thin films via saccharin-aided sol–gel process for carbon monoxide gas sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium tin oxide (ITO) nanocrystalline coatings were synthesized on a silicon oxide substrate with and without addition of saccharin. The effect of saccharin additive (0–0.1 M) on the average grain size of the coatings was investigated by X-ray diffraction (XRD). A field emission scanning electron microscope (FESEM) was used to characterize the surface morphology. Optical properties were studied using ultraviolet–visible (UV) spectroscopy. The electrical resistance of ITO thin films coated on quartz substrates was measured using four-point probe technique. Saccharin was added to the sol–gel solution as a grain-refining and pore-producing agent. Carbon monoxide (CO) gas sensitivity was investigated for ITO porous thin films, and the best saccharin-modified microstructure showed a sensitivity of (RAir/RCO) 65.2 for 100-ppm CO concentration at 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data available on request due to privacy/ethical restrictions. The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to [restrictions, e.g., their containing information that could compromise the privacy of research participants].

Abbreviations

SAC:

Saccharin

ITO:

Indium tin oxide

ITO-SAC X:

ITO samples with X molar saccharin in sol–gel procedure

CO:

Carbon monoxide

References

  1. M. Sibiński, K. Znajdek, S. Walczak, M. Słoma, M. Górski, A. Cenian, J. Mater. Sci. B 177, 1292 (2012). https://doi.org/10.1016/j.mseb.2012.03.037

    Article  CAS  Google Scholar 

  2. M. Katayama, Thin Solid Films 341, 140 (1999). https://doi.org/10.1016/S0040-6090(98)01519-3

    Article  CAS  Google Scholar 

  3. Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee, J.R. Lee, Thin Solid Films 411, 12 (2002). https://doi.org/10.1016/S0040-6090(02)00165-7

    Article  CAS  Google Scholar 

  4. T. Minami, Thin Solid Films 516, 5822 (2008). https://doi.org/10.1016/j.tsf.2007.10.063

    Article  CAS  Google Scholar 

  5. D.J. Lee, J. Park, H.S. Kim, D.H. Lee, M. Park, H. Chang, J.H. Jin, J.R. Sohn, K. Heo, B.Y. Lee, Sens. Actuators B 216, 482 (2015). https://doi.org/10.1016/j.snb.2015.04.057

    Article  CAS  Google Scholar 

  6. C.W. Lin, H.I. Chen, T.Y. Chen, C.C. Huang, C.S. Hsu, R.C. Liu, W.C. Liu, Sens. Actuators B 160, 1481 (2011). https://doi.org/10.1016/j.snb.2011.07.041

    Article  CAS  Google Scholar 

  7. K.S. Yoo, S.H. Park, J.H. Kang, Sens. Actuators B 108, 159 (2005). https://doi.org/10.1016/j.snb.2004.12.105

    Article  CAS  Google Scholar 

  8. S. Xu, Y. Shi, Sens. Actuators B 143, 71 (2009). https://doi.org/10.1016/j.snb.2009.08.057

    Article  CAS  Google Scholar 

  9. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sens. Actuators B 132, 224 (2008). https://doi.org/10.1016/j.snb.2008.01.030

    Article  CAS  Google Scholar 

  10. K. Lee, V. Scardaci, H.Y. Kim, T. Hallam, H. Nolan, B.E. Bolf, G.S. Maltbie, J.E. Abbott, G.S. Duesberg, Sens. Actuators B 188, 571 (2013). https://doi.org/10.1016/j.snb.2013.07.048

    Article  CAS  Google Scholar 

  11. K. Vijayalakshmi, C. Ravidhas, V.V. Pillay, D. Gopalakrishna, Thin Solid Films 519, 3378 (2011). https://doi.org/10.1016/j.tsf.2010.12.164

    Article  CAS  Google Scholar 

  12. K. Vijayalakshmi, V.V. Pillay, Philos. Mag. Lett. 91, 682 (2011). https://doi.org/10.1080/09500839.2011.608731

    Article  CAS  Google Scholar 

  13. S.G. Dasari, P. Nagaraju, V. Yelsani, M.V. Ramana Reddy, J. Mater. Sci.: Mater. Electron. 33(30), 23447 (2022)

    CAS  Google Scholar 

  14. B.C. Yadav, K. Agrahari, S. Singh, T.P. Yadav, J. Mater. Sci.: Mater. Electron. 27(5), 4172 (2016). https://doi.org/10.1007/s10854-016-4279-x

    Article  CAS  Google Scholar 

  15. Y. Zhang, Q. Li, Z. Tian, P. Hu, X. Qin, F. Yun, SN Appl. Sci. 2, 1 (2020). https://doi.org/10.1007/s42452-020-2050-7

    Article  CAS  Google Scholar 

  16. I. Madhi, M. Saadoun, B. Bessaïs, Sens. Lett. 9, 1726 (2011). https://doi.org/10.1166/sl.2011.1741

    Article  CAS  Google Scholar 

  17. M. Ramirez-Del-Solar, E. Blanco, Submicron Porous Materials: Porous Thin Film from Sol Gel (Springer, Cham, 2017), pp.157–161

    Book  Google Scholar 

  18. L.J. Meng, M.P. dos Santos, Thin Solid Films 322, 56 (1998). https://doi.org/10.1016/S0040-6090(97)00939-5

    Article  CAS  Google Scholar 

  19. P. Thilakan, S. Kalainathan, J. Kumar, P. Ramasamy, J. Electron. Mater. 24(6), 719 (1995). https://doi.org/10.1007/BF02659730

    Article  CAS  Google Scholar 

  20. J. Vetrone, Y. Chung, J. Vac. Sci. Technol. A 9, 3041 (1998)

    Article  Google Scholar 

  21. N. Xia, R.A. Gerhardt, Mater. Res. Express 3, 116408 (2016). https://doi.org/10.1088/2053-1591/3/11/116408

    Article  CAS  Google Scholar 

  22. M. Afrouzmehr, N. Yasrebi, M.H. Sheikhi, Ceram. Int. 47, 30504 (2021). https://doi.org/10.1016/j.ceramint.2021.07.228

    Article  CAS  Google Scholar 

  23. Z. Jiao, M. Wu, J. Gu, X. Sun, Sens. Actuators B 94, 216 (2003). https://doi.org/10.1016/S0925-4005(03)00343-5

    Article  CAS  Google Scholar 

  24. J.H. Lee, Y.H. Kim, S.J. Ahn, T.H. Ha, H.S. Kim, J. Mater. Sci. B 199, 37 (2015). https://doi.org/10.1016/j.mseb.2015.04.011

    Article  CAS  Google Scholar 

  25. A.K. Kulkarni, K.H. Schulz, T.S. Lim, M. Khan, Thin Solid Films 345, 273 (1999). https://doi.org/10.1016/S0040-6090(98)01430-8

    Article  Google Scholar 

  26. N.M. Ahmed, F.A. Sabah, H.I. Abdulgafour, A. Alsadig, A. Sulieman, M. Alkhoaryef, Results Phys. 13, 102159 (2019). https://doi.org/10.1016/j.rinp.2019.102159

    Article  Google Scholar 

  27. M. Ahmed, A. Bakry, A. Qasem, H. Dalir, Opt. Mater. (Amst.) 113, 110866 (2021). https://doi.org/10.1016/j.optmat.2021.111053

    Article  CAS  Google Scholar 

  28. S. Najwa, A. Shuhaimi, N.A. Talik, N. Ameera, M. Sobri, M. Rusop, Appl. Surf. Sci. 479, 1220 (2019). https://doi.org/10.1016/j.apsusc.2019.01.123

    Article  CAS  Google Scholar 

  29. E. Callone, G. Carturan, M. Ischia, A. Sicurelli, J. Mater. Res. 21, 1726 (2006). https://doi.org/10.1557/jmr.2006.0217

    Article  CAS  Google Scholar 

  30. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sens. Actuators B 1, 224 (2008). https://doi.org/10.1016/j.snb.2008.01.030

    Article  CAS  Google Scholar 

  31. S.M. Hassan Zadeh Shirazi, M.E. Bahrololoom, M.H. Shariat, Surf. Eng. Appl. Electrochem. 52(5), 434 (2016). https://doi.org/10.1007/s11661-021-06202-y

    Article  CAS  Google Scholar 

  32. S.H. Kim, H.J. Sohn, Y.C. Joo, Y.W. Kim, T.H. Yim, H.Y. Lee, T. Kang, Surf. Coat. Technol. 199, 43 (2005). https://doi.org/10.1016/j.surfcoat.2004.11.035

    Article  CAS  Google Scholar 

  33. A.M. Rashidi, A. Amadeh, Surf. Coat. Technol. 3, 353 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.036

    Article  CAS  Google Scholar 

  34. B. Şahin, Sci. World J. (2013). https://doi.org/10.1155/2013/172052

    Article  Google Scholar 

  35. S.M. Joshi, G.W. Book, R.A. Gerhardt, Thin Solid Films 520, 2723 (2012). https://doi.org/10.1016/j.tsf.2011.11.052

    Article  CAS  Google Scholar 

  36. M. Duta, M. Anastasescu, J.M. Calderon-Moreno, L. Predoana, S. Preda, M. Nicolescu, H. Stroescu, V. Bratan, I. Dascalu, E. Aperathitis, M. Modreanu, M. Zaharescu, M. Gartner, J. Mater. Sci.: Mater. Electron. 27(5), 4913 (2016). https://doi.org/10.1007/s10854-016-4375-y

    Article  CAS  Google Scholar 

  37. M.J. Alam, D.C. Cameron, Thin Solid Films 377–378, 455 (2000). https://doi.org/10.1016/S0040-6090(00)01369-9

    Article  Google Scholar 

  38. D.C. Agrawal, Introduction to Nanoscience and Nanomaterials 1 (World Scientific, 2013), pp. 177–120

  39. V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, Vacuum 84, 864 (2010). https://doi.org/10.1016/j.vacuum.2009.11.017

    Article  CAS  Google Scholar 

  40. I. Madhi, M. Saadoun, B. Bessais, Procedia Eng 47, 192 (2012). https://doi.org/10.1016/j.proeng.2012.09.116

    Article  CAS  Google Scholar 

  41. Z.H. Li, D.Y. Ren, Trans. Nonferrous Met. Soc. 16, 1358 (2006). https://doi.org/10.1016/S1003-6326(07)60020-X

    Article  Google Scholar 

  42. Y.S. Jung, S.S. Lee, J. Cryst. Growth 259, 343 (2003). https://doi.org/10.1016/j.jcrysgro.2003.07.006

    Article  CAS  Google Scholar 

  43. M.M. Öztaş, Chin. Phys. Lett. 25, 4090 (2008)

    Article  Google Scholar 

  44. M.J. Alam, D.C. Cameron, Thin Solid Films 420–421, 76 (2002). https://doi.org/10.1016/S0040-6090(02)00737-X

    Article  Google Scholar 

  45. B.W.N. Hemasiri, J.-K. Kim, J.-M. Lee, Micro Nano Lett. (2017). https://doi.org/10.1007/s40820-017-0174-0

    Article  Google Scholar 

  46. N. Revathi, P. Prathap, Y.P.V. Subbaiah, K.T.R. Reddy, J. Phys. D 41, 155404 (2008). https://doi.org/10.1088/0022-3727/41/15/155404

    Article  CAS  Google Scholar 

  47. S. Dietrich, M. Kusnezoff, U. Petasch, A. Michaelis, Sensors 21, 497 (2021). https://doi.org/10.3390/s21020497

    Article  CAS  Google Scholar 

  48. M. Kumar, B.R. Mehta, V.N. Singh, R. Chatterjee, S. Milikisiyants, K.V. Lakshmi, J.P. Singh, Appl. Phys. Lett. 96, 123114 (2010). https://doi.org/10.1063/1.3371717

    Article  CAS  Google Scholar 

  49. A.S. Mokrushin, N.A. Fisenko, P.Y. Gorobtsov, T.L. Simonenko, O.V. Glumov, N.A. Melnikova, N.P. Simonenko, K.A. Bukunov, E.P. Simonenko, V.G. Sevastyanov, N.T. Kuznetsov, Talanta 221, 121455 (2021). https://doi.org/10.1016/j.talanta.2020.121455

    Article  CAS  Google Scholar 

  50. S. Sharma, M. Madou, Philos. Trans. R. Soc. A 370, 2448 (2012). https://doi.org/10.1098/rsta.2011.0506

    Article  CAS  Google Scholar 

  51. N. Barsan, U. Weimar, J. Electroceram. 7(3), 143 (2001). https://doi.org/10.1007/s10832-009-9583-x

    Article  CAS  Google Scholar 

  52. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B 3, 147 (1991). https://doi.org/10.1016/0925-4005(91)80207-Z

    Article  CAS  Google Scholar 

  53. A. Mirzaei, S. Park, G.J. Sun, H. Kheel, C. Lee, J. Hazard. Mater. 305, 130 (2016). https://doi.org/10.1016/j.jhazmat.2015.11.044

    Article  CAS  Google Scholar 

  54. H. Yamaura, Y. Iwasaki, S. Hirao, H. Yahiro, Sens. Actuators B 153, 465 (2011). https://doi.org/10.1016/j.snb.2010.10.044

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ZD and MEB conceived the presented idea. MEB encouraged ZD to investigate the effect of saccharin on thin-film coating and supervised the findings of this work. ZD and IM carried out the experiments. IM designed and performed the experiments and analyzed the data. ZD and IM performed the measurements. MEB was involved in planning and supervised the work. ZD and IM processed the experimental data, performed the analysis, drafted the manuscript, and designed the figures. ZD and IM manufactured the samples and characterized them using SEM, UV–vis, 4 Point prob, and gas sensing spectroscopy. IM performed the XRD characterization and data analyzed. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Iman Moghim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damshekan, Z., Moghim, I. & Bahrololoom, M.E. Preparation of porous indium tin oxide thin films via saccharin-aided sol–gel process for carbon monoxide gas sensing applications. J Mater Sci: Mater Electron 34, 937 (2023). https://doi.org/10.1007/s10854-023-10261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10261-9

Navigation