Skip to main content
Log in

Fabrication of several SnO2-based anodes for electrochemical ozone generation: comparison, characterization and application

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, several titanium-based electrodes (e.g., Ti, Ti/SnO2–Sb–Ni, Ti/SnO2–Sb–Ni-MWCNTs, Ti/TiHx/SnO2–Sb–Ni and Ti/TiHx/SnO2–Sb–Ni-MWCNTs) were fabricated by spin-coating and pyrolysis methods for electrochemical ozone generation. The modified electrodes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) techniques. These electrodes are used as an anode for electrochemical ozone generation. The ozone generation at the surface of the electrodes was investigated. The optimum molar ratio of metal salts and multi-walled carbon nanotubes (MWCNTs) (Sn/ Sb/ Ni/ MWCNTs) was obtained 500:8:1:15. The repetition coating time, electrolysis time, electrolysis current density and kind of electrolytes (H3PO4, HClO4 and H2SO4) at different concentrations (0.1, 0.05, 0.1, 0.2, 0.5 and 1 M) were investigated and, respectively, were determined (i.e., 22 times, 120 s, 20 mA cm−2, HClO4 and 0.1 M). As the results showed, in 4 mL HClO4 (0.1 M) after 25 min electrolysis under a constant current of 12.8 mA, at the surface of the Ti/TiHx/SnO2–Sb–Ni-MWCNTs electrode (A = 0.64 cm2) could produce 19.9 mg L−1 of ozone, which is triple the amount produced by the electrodes not modified with MWCNTs. Also, the best-modified electrode (Ti/TiHx/SnO2–Sb–Ni-MWCNTs) was used for electrooxidation of three types of disperse dyes. The results showed that Ti/TiHx/SnO2–Sb–Ni-MWCNTs electrode can remove the dye (100 mg L−1) molecules up to 97%, 90% and 86% for C.I. Disperse yellow 54 (DY 54), C.I. Disperse blue 198 (DB 198) and C.I. Disperse red 167 (DR 167), respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Shekarchizade, M.K. Amini, Int. J. Electrochem. 1, 1 (2011)

    Article  CAS  Google Scholar 

  2. C. Gottschalk, Ozonation of Water and Waste Water, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010), p. 149

    Google Scholar 

  3. J. Wang, Z. Bai, Chem. Eng. J. 312, 79 (2017)

    Article  CAS  Google Scholar 

  4. J. Wang, H. Chen, Sci. Total Environ. 704, 135249 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. P.A. Christensen, K. Zakaria, T.P. Curtis, Ozone Sci. Eng. 34, 49 (2012)

    Article  CAS  Google Scholar 

  6. M. Abbasi, A.R. Soleymani, J. Basiri Parsa, Process Saf. Environ. 94, 140 (2015)

  7. C.M. Lees, J.A. Lansing, S.L. Morelly, S.E. Lee, M.H. Tang, J. Electrochem. Soc. 165, E833 (2018)

    Article  CAS  Google Scholar 

  8. Y.H. Wang, Q.Y. Chen, Int. J. Electrochem. 2013, 128248 (2013)

    Google Scholar 

  9. G. Gibson, A. Morgan, P. Hu, W.F. Lin, Chem. Phys. Lett. 654, 46 (2016)

    Article  CAS  Google Scholar 

  10. J.W. Yu, G.B. Jung, C.W. Chen, C.C. Yen, X.Y. Nguyen, C.C. Ma, C.W. Hsieh, C.L. Lin, Renew. Energy 1, 1 (2017)

    Google Scholar 

  11. S. Chen, F. Jiang, X. Xie, Y. Zhou, X. Hu, Electrochim. Acta 192, 357 (2016)

    Article  CAS  Google Scholar 

  12. P.C. Foller, C.W. Tobias, J. Electrochem. Soc. 129, 506 (1982)

    Article  CAS  Google Scholar 

  13. K. Arihara, C. Terashima, A. Fujishima, J. Electrochem. Soc. 154, E71 (2007)

    Article  CAS  Google Scholar 

  14. P.C. Foller, G.H. Kelsall, J. App. Electrochem. 23, 996 (1993)

    Article  CAS  Google Scholar 

  15. Y.H. Wang, S. Cheng, K.Y. Chen, X.Y. Li, J. Electrochem. Soc. 152, D197 (2005)

    Article  Google Scholar 

  16. P.A. Christensen, W.F. Lin, H. Christensen, A. Imkum, J.M. Jin, G. Li, C.M. Dyson, Ozone Sci. Eng. 31, 287 (2009)

    Article  CAS  Google Scholar 

  17. J. Basiri Parsa, M. Abbasi, A. Cornell, J. Electrochem. Soc. 159, D265 (2012)

  18. A.R. Rahmani, G. Azarian, D. Nematollahi, J. Electroanal. Chem. 824, 216 (2018)

    Article  CAS  Google Scholar 

  19. M. Errami, R. Salghi, M. Zougagh, A. Zarrouk, E.H. Bazzi, A. Chakir, H. Zarrok, B. Hammouti, L. Bazzi, Res. Chem. Intermed. 39, 505 (2013)

    Article  CAS  Google Scholar 

  20. L. Zhang, F. Wei, Q. Zhao, X. Chen, Y. Yao, Res. Chem. Intermed. 46, 1389 (2020)

    Article  CAS  Google Scholar 

  21. A. Khataee, B. Vahid, A. Akbarpour, S. Aber, Res. Chem. Intermed. 41, 6073 (2015)

    Article  CAS  Google Scholar 

  22. C. Ba, L. Shi, Z. Wang, G. Chen, S. Wang, Y. Zhao, M. Zhang, S. Yuan, Res. Chem. Intermed. 43, 5857 (2017)

    Article  CAS  Google Scholar 

  23. S.A. Cheng, K.Y. Chan, Electrochem. Solid-State lett. 7, D4 (2004)

    Article  CAS  Google Scholar 

  24. B. Correa Lozano, C. Comninellis, A.D. Battisti, J. Appl. Electrochem. 27, 970 (1997)

  25. H.Y. Ding, Y.J. Feng, J.F. Liu, Mater. Lett. 61, 4920 (2007)

    Article  CAS  Google Scholar 

  26. G. Li, H. Wang, Y. Chen, J. Solid. State. Electrochem. 17, 1303 (2013)

    Article  CAS  Google Scholar 

  27. L. Zhang, L. Xu, J. He, J. Zhang, Electrochim. Acta 117, 192 (2014)

    Article  CAS  Google Scholar 

  28. W. Wu, H. Huang, T. Lim, Rsc. Adv. 5, 32245 (2015)

    Article  CAS  Google Scholar 

  29. H. An, H. Cui, W. Zhang, J. Zhai, Y. Qian, X. Xie, Q. Li, Chem. Eng. J. 209, 86 (2012)

    Article  CAS  Google Scholar 

  30. X. Li, D. Shao, H. Xu, W. Lv, W. Yan, Chem. Eng. J. 85, 1 (2016)

    CAS  Google Scholar 

  31. D. Shao, W. Yan, X. Li, H. Yang, H. Xu, Ind. Eng. Chem. Res. 53, 3898 (2014)

    Article  CAS  Google Scholar 

  32. M. Abbasi, J. Backstrom, A. Cornell, J. Electrochem. Soc. 165, H568 (2018)

    Article  CAS  Google Scholar 

  33. A. Benvidi, P. Kakoolaki, H.R. Zare, R. Vafazadeh, Electrochim. Acta 56, 2045 (2011)

    Article  CAS  Google Scholar 

  34. A. Benvidi, P. Kakoolaki, A.R. Gorji, M. Mazloum Ardakani, H.R. Zare, R. Vafazadeh, Anal. Methods 5, 6649 (2013)

    Article  CAS  Google Scholar 

  35. A. Benvidi, S. Yazdanparast, M. Rezaeinasab, M. Dehghan Tezerjani, S. Abbasi, J. Electroanal. Chem. 808, 311 (2018)

  36. F. Nabizadeh Chianeh, J. Basiri Parsa, Desalin. Water Treat. 57, 20574 (2016)

  37. F. Nabizadeh Chianeh, J. Basiri Parsa, J. Iran. Chem. Soc. 1, 175 (2015)

  38. J. Xing, D. Chen, W. Zhao, X. Peng, Z. Bai, W. Zhang, X. Zhao, Rsc. Adv. 5, 53504 (2015)

    Article  CAS  Google Scholar 

  39. N. Tüfekci, N. Sivri, İ Toroz, Turkish. J. Fish. Aquat. Sci. 7, 97 (2007)

    Google Scholar 

  40. N. Bensalah, M.Q. Alfaro, C. Martínez Huitle, Chem. Eng. J. 149, 348 (2009)

    Article  CAS  Google Scholar 

  41. J.M. Peralta Hernández, C.A. Martínez Huitle, J.L. Guzman Mar, A. Hernandez Ramire, J. Environ. Eng. Manag. 19, 257 (2009)

  42. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. P.V. Nidheesh, M. Zhou, M.A. Oturan, Chemosphere 197, 210 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. M. Neamtu, A. Yediler, I. Siminiceanu, M. Macoveanu, A. Kettrup, Dyes Pigm. 60, 61 (2004)

    Article  CAS  Google Scholar 

  45. T.H. Kim, C. Park, J. Yang, S. Kim, J. Hazard. Mater. B 112, 95 (2004)

    Article  CAS  Google Scholar 

  46. R.L. Oliveira, M.A. Anderson, G.A. Umbuzeiro, G.J. Zocolo, M.V.B. Zanoni, J. Hazard. Mater. 205, 1 (2012)

    Article  PubMed  CAS  Google Scholar 

  47. J. Wang, L. Xu, Crit. Rev. Environ. Sci. Technol. 42, 251 (2012)

    Article  CAS  Google Scholar 

  48. Y. Liu, Y. Zhao, J. Wang, J. Hazard. Mater. 404, 124192 (2021)

    Article  CAS  Google Scholar 

  49. M. Karimi, A. Benvidi, S.M. Bidoki, M.A. Karimi-Zarchi, S. Dalirnasab, M. Dehghan-Tezerjani, J. Appl. Chem. 15, 45 (2020)

    Google Scholar 

  50. M. Karimi, S.M. Bidoki, A. Benvidi, Environ. Eng. Res. 27, 200429 (2022)

    Article  Google Scholar 

  51. D. Sugimori, R. Banzawa, M. Kurozumi, I. Okura, J. Biosci. Bioeng. 87, 252 (1999)

    Article  CAS  PubMed  Google Scholar 

  52. H.J. Chao, D. Xue, W. Jiang, D. Li, Z. Hu, J. Kang, D. Liu, Water. Environ. Res. 92, 779 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this work by Yazd University research council. We also grateful Engineer research center of Yazd University for supporting of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Benvidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvidi, A., Karimi, M., Bidoki, S.M. et al. Fabrication of several SnO2-based anodes for electrochemical ozone generation: comparison, characterization and application. Res Chem Intermed 47, 4803–4824 (2021). https://doi.org/10.1007/s11164-021-04551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04551-2

Keywords

Navigation