Skip to main content
Log in

Study of Thermal Shock Resistance of Pulsed High-Temperature Equipment Refractories

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results are provided for study of a series of high refractoriness objects for thermal shock resistance and determination of their actual heat capacity. It is shown that under high temperature conditions and sharply varying thermal loads good resistance develops for objects with the highest ratio of heated surface area to volume. Two-phase materials demonstrate the best thermal shock resistance. Periclase objects with a protective coating based on ZrO2 have thermal shock resistance comparable with that of zirconia objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. V. Kislykh and K. V. Krapivnoi, “Use of non-isoentropic multicascade compression in order to prepare dense high-temperature gas,” TVT, 28(6), 1195 (1990).

  2. M. E. Topchiyan and A. M. Kharitonov, “Aerodynamic tubes for hypersonic research (achievements, problems, prospects),” PMTF, 35(3), 66 (1994).

  3. V. I. Pinakov, V.M. Rychkov, and M. E. Topchiyan, “Possibility of modeling hypersonic streams in gas dynamic adiabatic compression devices with high pressure,” PMTF. No. 1, 63 (1982).

  4. V. I. Rychkov, “Possibility of modeling aero gas dynamic processes in pulsed adiabatic unit of ultra-high pressure,” Diss. Cand. Phys.-Mat Sci., Novosibirsk (1995).

  5. V. V. Kislykh, V. N. Vasil’ev, and E. S. Verem’ev, “Study of compressed gas parameters in an adiabatic compression unit (ACU),” TVT, 9(5), 920 – 927 (1971).

  6. Yu. N. Ryabinin, Gases at High Density and Temperature [in Russian], Fizmatgiz, Moscow (1959).

  7. E. S. Verem’ev, V. V. Kislykh, and A. E. Sidel-nikov, “Study of decomposition of nitrous oxide at pressures of 1500 – 2500 atm,” Kinetika Kataliz, XIII(2), 269 – 278 (1972).

  8. V. V. Kislykh, O. V. Petrova, and I. A. Reshetin, USSR Inventor’s Cert. 1012965. Method for studying chemical reaction kinetics, Byul. No. 15.

  9. V. V. Zatoloka, Pulsed Aerodynamic Tubes [in Russian], Nauka, Novosibirsk (1986).

  10. V. V. Shakov, Bases of Boundary Layer Theory [in Russian], Kuib. Aviats. Inst., Kuibyshev (1989).

  11. M. F. Zhukov and V. M. Fomin, “High-energy processes of material treatment,” Nizkotemperatur. Plazma, 18, 425 – 437 (2000).

    Google Scholar 

  12. Yu. A. Kolbanovskii, V. S. Shchipachev, N. Ya. Chernyak, et al., Chemipulsed Compression of Gas in Chemistry and Technology [in Russian], Nauka, Moscow (1982).

  13. V. V. Struminskii, V. V. Zatoloka, A. S. Antonov, et al., “Modeling turbulent boundary layer in pulsed aerodynamic tubes over a wide range of change in main stream parameters,” in: Turbulent Flow Mechanics [in Russian], Nauka, Moscow (1980).

  14. A. S. Antonov, B. V. Boshenyatov, V. A. Dmitriev, et al., “Aerodynamic pulsed tube for hypersonic velocities IT-301,” in: Aerophysics Research [in Russian], ITPM SO RAN SSSR, Novosibirsk (1972).

  15. G. F. Riva, A. Reggiori, and G. B. Daminelli, “A method for evaluating the combustion efficiency in direct connect super-sonic combustion test facilities,” 22nd International Symposium on Shock Waves. Imperial College, London. 18 – 23 July, 1999.

  16. V. L. Semenov, G. A. Kleyankin, A. P. Ivanov, et al., “Development of a model and test bench for studying questions of integration of the flow tracks of GPVRD in GLA airframe at Mach Nos. 6 – 14,” XXIX Academic Readings in Cosmonautics, Moscow, 25 – 28 Jan. (2005)

  17. Yu. Mayauskas, V. Daukshis, R. Abraimis, et al., Refractory ceramics in High-Temperature Gas Streams [in Russian], Monokslaks, Vilnyus (1975).

  18. A. G. Karaulov, “Zircon refractories for high-temperature devices based on baddeleyite,” in: High-Temperature Materials for MHDES [in Russian], Moscow (1983).

  19. A. N. Romanov, A. I. Krotov, and O. I. Kutepova, “High-temperature materials for MHDES,” in: High-Temperature Materials for Lining Different MHD Unit Assemblies [in Russian], Nauka, Moscow (1983).

  20. A. G. Karaulov, A. A. Grebenyuk, T. E. Sudakina, et al., “Ramming mixes of zirconium dioxide in phosphoric acid,” Ogneupory, No. 3, 55 – 60 (1974).

  21. I. I. Nemets, N. S. Bel’maz, L. N. Semykina, et al., “Thermochemical properties of zirconium dioxide concretes based on mechanochemical phosphate containing binders,” Ogneupory Tekhn. Keram., No. 5, 2 – 5 (1997)

  22. E. K. Koehler, “The structure and properties of refractory’s zirconia ceramics. I. Fundamental Investigations,” Ceram. Internat., 10(1), 3 – 13 (1984).

    Article  Google Scholar 

  23. E. K. Koehler, “Structure and properties of refractory’s zirconia ceramics. II. Applied investigations,” Ceram. Internat., 10(2), 66 – 74 (1984).

    Article  Google Scholar 

  24. E. K. Koehler, “Structure and properties of refractory’s zirconia ceramics. III. Studies of technical properties of materials and technological elaborations,” Ceram. Internat., 11(1), 2 – 12 (1985).

    Google Scholar 

  25. D. S. Rutman, Yu. S. Toropov, S. Yu. Pliner, et al., Highly Refractory Materials Based on Titanium Dioxide [in Russian], Metallurgiya, Moscow (1985).

  26. R. Abraimis, É. Sakalauskas, and V. Stankyatichka, “Descriptive identification of erosion by a thermal conductivity module,” Ogneupory Tekhn. Keram., No. 2, 30 – 35 (2005).

  27. R. Abraimis, Model of refractory erosion breakdown mechanism at high temperature, Ogneupory, No. 3, 9 – 12 (1988).

  28. V. N. Strakhov and E. A. Pavlova, “Thermal ageing of materials of zirconium dioxide,” Ogneupory Tekhn. Keram., No. 1, 12 – 17 (2008).

  29. T. Settu and R. Gobinathan, “Synthesis and characterization of ZrO2–Y2O2 and ZrO2–Y2O3–CeO2 precursor powder,” J. Eur. Ceram. Soc., No. 6, 1309 – 1318 (1986).

  30. O. M. Morgulis, A. V. Stovbur, and G. K. Balasova, “Objects of fuzed zirconium dioxide with improved thermal stability,” Coll. Sci. Work. UkrNIIO, No. 3, Khar’kov (1960).

  31. A. I. Rekov, “Results of experimental work and research of highly refractory materials for an MHD-generator,” in: Materials for an MHD-Generator Channel [in Russian], Inst. High. Temp. Akad. Sci. SSSR, Nauka, Moscow (1969).

  32. A. G. Karaulov and V. Ya. Belik, “Thermal shock resistance of zirconium dioxide objects,” Sci. Work UkrNIIO “Theoretical and technological research in the field of refractories,” Metallurgiya, Moscow (1967).

  33. A. G. Karaulov, A. A. Grebenyuk, N. V. Gul’ko, and V. Ya. Belik, “Effect of zirconium dioxide specimen structure on thermal shock resistance,” Sci.Work UkrNIIO “Theoretical and technological research in the field of refractories,” Metallurgiya, Moscow (1967).

  34. V. S. Bakunov, V. A. Baklevich, A. S. Vlasov, et al., High-Temperature Oxides Ceramics [in Russian], Metallugiya, Moscow (1989).

  35. A. I. Rekov, A. A. Grebenyuk, A. G. Karaulov, et al., “Main results of using refractories of zirconium dioxide in a high-temperature combustion chamber of a test unit with an open cycle MHD-generator,” in: Materials for MHD-Generator Channel [in Russian], Nauka, Moscow (1969).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Zemlyanoi.

Additional information

Translated from Novye Ogneupory, No. 7, pp. 43 – 47, July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashcheev, I.D., Zemlyanoi, K.G., Dzerzhinskii, R.V. et al. Study of Thermal Shock Resistance of Pulsed High-Temperature Equipment Refractories. Refract Ind Ceram 57, 369–372 (2016). https://doi.org/10.1007/s11148-016-9986-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-016-9986-6

Keywords

Navigation