Skip to main content
Log in

Review on flexible radiation-protective clothing materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the development of society and technology, machinery and equipment have enhanced our work efficiency but have also introduced various hazards, such as electromagnetic radiation, medical, industrial, and agricultural rays. The harms these radiations inflict on human health are significant, with severe cases leading to cancer, disability, or even life-threatening situations. Therefore, effective protective measures in some fields are crucial. This paper firstly summarized the basic principles of radiation protection for different rays, then systematically introduced the widely used manufacturing methods for flexible radiation shielding materials, including weaving with metal fibers, fiber blending, silver-plated fibers, and so on. Subsequently, the paper reviewed the testing methods of radiation-protective clothing materials. Finally, it comprehensively concluded the discussions on flexible radiation shielding materials and offered a perspective on their future development trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

All relevant data are within the paper.

References

  1. Jia H, Lu Q (2005) Res Prog Rad Res Fibers Fabr 28:30–33

    CAS  Google Scholar 

  2. Tanihata I, Toki H, Kajino T (eds) (2023) Handbook of nuclear physics. Springer Nature, New York

    Google Scholar 

  3. Moore B, VanSonnenberg E, Casola G, Novelline RA (1992) The relationship between back pain and lead apron use in radiologists. Am J Roentgenol 158:191–193. https://doi.org/10.2214/ajr.158.1.1530763

    Article  CAS  Google Scholar 

  4. Okafor CE, Okonkwo UC, Okokpujie IP (2021) Trends in reinforced composite design for ionizing radiation shielding applications: a review. J Mater Sci 56:11631–11655. https://doi.org/10.1007/s10853-021-06037-3

    Article  CAS  Google Scholar 

  5. Ma X, Cheng G, Zhang Y, Hou L (2019) Research progress in nuclear ray protective clothing MA. J Cloth Res 4:97–104

    Google Scholar 

  6. Volterrani D, Erba PA, Strauss HW, Mariani G, Larson SM (eds) (2022) Nuclear oncology: from pathophysiology to clinical applications. Springer Nature, New York

    Google Scholar 

  7. Chen F, Zhai L, Yang H et al (2021) Unparalleled armour for aramid fiber with excellent UV resistance in extreme environment. Adv Sci 8:2004171. https://doi.org/10.1002/advs.202004171

    Article  CAS  Google Scholar 

  8. Zhai L, Huang Z, Luo Y et al (2022) Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment. Chem Eng J 440:135724. https://doi.org/10.1016/j.cej.2022.135724

    Article  CAS  Google Scholar 

  9. Lina L, Runjun S, Meiyu C, Qi T (2019) Research progress on radiation protection materials. Synth Fiber China 48:21–25. https://doi.org/10.16090/j.cnki.hcxw.20191008.006

    Article  Google Scholar 

  10. Liang L, Zhao R, Xu J, Yue Q (2011) Discussion and analysis on protective performance of X -ray protective clothing. China Pers Prot Equip 18:22–26. https://doi.org/10.16102/j.cnki.cppe.2011.03.002

    Article  Google Scholar 

  11. Jia H, Lu Q (2005) Research progress in radiation resistant fibers and fabrics. Chin Synth Fib 28:30–33

    CAS  Google Scholar 

  12. Chen J (2023) Preparation and X-ray shielding properties research of light-weight and flexible led-free X-ray protective fiber materials. Phd Dissertation, Donghua University

  13. McCaffrey JP, Shen H, Downton B, Mainegra-Hing E (2007) Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med Phys 34:530–537. https://doi.org/10.1118/1.2426404

    Article  CAS  PubMed  Google Scholar 

  14. Wang L (2006) Research on radiation protection of marine nuclear power plant. PhD Dissertation, Harbin Engineering University

  15. White JM (1983) Introduction to radiation protection principles. Atomic Energy Press, Canada

    Google Scholar 

  16. Chen L, Zhao X (2021) Research status and development trend of flexible x-ray resistant materials. Cailiao Daobao/Mater Rep 35:15088–15093. https://doi.org/10.11896/cldb.20040096

    Article  Google Scholar 

  17. Xiang C, Teng X, Jia Q (2020) Res Prog High-Energy Radiat Prot Fiber Mater 40:1–11. https://doi.org/10.16454/j.cnki.issn.1001-0564.2020.01.014

    Article  Google Scholar 

  18. Xiang C (2021) Preparation and properties of anti-radiation composite fiber. Master Thesis, Beijing Institute of Fashion Technology

  19. Compton AH (1928) On the interaction between radiation and electrons. Phys Rev 31:59–65. https://doi.org/10.1103/PhysRev.31.59

    Article  CAS  Google Scholar 

  20. Li W, Zhao X (2016) Research progress of radiation protection fiber. J Chendu Text Coll 33:187–190

    CAS  Google Scholar 

  21. Saha GB (2006) Interaction of radiation with matter. Physics and radiobiology of nuclear medicine. Springer, New York, New York, NY, pp 56–70

    Chapter  Google Scholar 

  22. Sobczak J, Żyła G (2024) Nano and microcomposites as gamma and X-ray ionizing radiation shielding materials—A review. Energy 290:130210. https://doi.org/10.1016/j.energy.2023.130210

    Article  CAS  Google Scholar 

  23. Hess W (1962) Energetic particles in the inner Van Allen belt. Space Sci Rev 1:278–312. https://doi.org/10.1007/BF00240580

    Article  Google Scholar 

  24. Yousif M E (2015) The photoelectric effects: radiation based with atomic model. Int J Fundam Phys Sci 5:18–31. https://doi.org/10.14331/ijfps.2015.330082

    Article  Google Scholar 

  25. Zhang W, Feng Y, Althakafy JT et al (2022) Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv Compos Hybrid Mater 5:2012–2020. https://doi.org/10.1007/s42114-022-00539-7

    Article  CAS  Google Scholar 

  26. Zhao S, Huo Z, Zhong G et al (2021) Research progress of neutron gamma-ray composite shielding materials. Funct Mater 52:7823–7830

    Google Scholar 

  27. Özcan M, Kaya C, Kaya F (2023) Cosmic radiation shielding property of boron reinforced continuous fiber nanocomposites produced by electrospinning. Discov Nano 18:152. https://doi.org/10.1186/s11671-023-03940-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng W (2017) Preparation and properties of flexible radiation shielding composites. Master Thesis, Nanjing University of Aeronautics and Astronautics

  29. Jinyuan D, Xingxiang Z, Jianjin N et al (1993) The manufacture ang properties of neutron shielding fiber. J Tianjin Inst Text Sci Technol 12:59–64

    Google Scholar 

  30. Han Y, Chen F, Yu Y, Shen H (2015) Investigation of the research status of neutron shielding materials. Mater Her Nano New Mater Spec 29:483–488

    Google Scholar 

  31. Zhang Y (2018) Research on anti-radiation polyacrylonitrile fiber. Light Text Ind Technol 47:0–22. https://doi.org/10.3969/j.issn.2095-0101.2018.07.003

    Article  Google Scholar 

  32. Burmistrov YM, Skorkin VM (2019) Study of the X-Ray radiation in metal-containing composites irradiated with neutrons and photons. J Surf Investig 13:195–198. https://doi.org/10.1134/S1027451019020058

    Article  CAS  Google Scholar 

  33. Ju X (2021) Research and development of anti-nuclear radiation polyester-based fiber and its fabric. Master Thesis, SooChow University

  34. Mahltig B (2020) Fibers for radiation protection. In: Hu J, Kumar B, Lu J (eds) Handbook of fibrous materials. Wiley, pp 889–926. https://doi.org/10.1002/9783527342587.ch32

    Chapter  Google Scholar 

  35. Kim S-C (2021) Development of a lightweight tungsten shielding fiber that can be used for improving the performance of medical radiation shields. Appl Sci 11:6475. https://doi.org/10.3390/app11146475

    Article  CAS  Google Scholar 

  36. Kim S-C, Son JS (2021) Double-layered fiber for lightweight flexible clothing providing shielding from low-dose natural radiation. Sci Rep 11:3676. https://doi.org/10.1038/s41598-021-83272-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian H, Wang CH (2016) Synthesis of gadolinium-containing methyl methacrylate copolymer and preparation of neutron radiation-resistant nanofibers 32:102–103

  38. Özdemir H, Camgöz B (2018) Gamma radiation shielding effectiveness of cellular woven fabrics. J Ind Text 47:712–726. https://doi.org/10.1177/1528083716670309

    Article  Google Scholar 

  39. Lou C-W, Liu Y-L, Shiu B-C et al (2022) Preparation and evaluation of polyester-cotton/wire blended conductive woven fabrics for electromagnetic shielding. J Ind Text 51:7104S-7118S. https://doi.org/10.1177/1528083721997184

    Article  CAS  Google Scholar 

  40. Ilyushchenko AF, Leshok AV, Rogovoi AN (2018) The application of fibers and nanoparticles in the form of copper-based powder sintered friction material with lubricant cooling. J Frict Wear 39:183–187. https://doi.org/10.3103/S1068366618030054

    Article  Google Scholar 

  41. Maity S, Singha K, Debnath P, Singha M (2013) Textiles in electromagnetic radiation protection. J Saf Eng 2:11–19

    Google Scholar 

  42. Liu HF (2007) Research progress of electromagnetic shielding fibers. J Ind Text 25:1–4

    Google Scholar 

  43. Yong F (2009) Development of electromagnetic shielding fibers ang fabrics. ShanDong Text Technol 51:54–56

    Google Scholar 

  44. Zhang L (2010) The development and test research of electromagnetic radiation shielding textiles based on silver fiber. PhD dissertation, Hebei University of Science and Technology

  45. Guo K (2015) Research on the structural properties and characterization system of silver-plated fibers. Master Thesis, Qingdao University

  46. Shi L (2010) Research on the preparation and multi-function properties of the electromagnetic radiation resistant fabrics with silver-plated fibers. Master Thesis, Zhejiang Sci-Tech University

  47. You YY, Shang CJ (2018) Preparation of silver fiber and its application in radiation-proof textile. Knitt Ind 22(46):27–31

    Google Scholar 

  48. Lifeng B, Lu Q (2003) Development of ion-exchange fiber by raditaion grafting. CHINA Synth FIBER Ind 26:4–6

    Google Scholar 

  49. Wu W (2010) Radiation fiber its research. Rad Fiber Res 30:82–84. https://doi.org/10.14162/j.cnki.11-4772/t.2010.05.001

    Article  Google Scholar 

  50. More CV, Alsayed Z, Badawi MS et al (2021) Environ Chem Lett 19:2057–2090. https://doi.org/10.1007/s10311-021-01189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Derradji M, Zegaoui A, Xu Y-L et al (2018) Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 421:13–17. https://doi.org/10.1016/j.nimb.2018.02.017

    Article  CAS  Google Scholar 

  52. Lozovan AA, Vilkov FE (2018) Investigation into the X-radiation effect on the structure and microhardness of the tungsten powder-filled composite. Russ J Non-Ferrous Met 59:693–697. https://doi.org/10.3103/S1067821218060135

    Article  Google Scholar 

  53. Attia NF, Hegazi EM, Abdelmageed AA (2018) Smart modification of inorganic fibers and flammability mechanical and radiation shielding properties of their rubber composites. J Therm Anal Calorim 132:1567–1578. https://doi.org/10.1007/s10973-018-7141-y

    Article  CAS  Google Scholar 

  54. Mai F, Zhang Q, Wang R et al (2023) PbWO 4 synergistically modified with styrene maleic anhydride and bis(dioctyl pyrophosphate) ethylene titanate in highly filled polymer fibers for enhanced γ-Ray shielding safety and wear comfort of articles. Adv Mater Technol 8:2201531. https://doi.org/10.1002/admt.202201531

    Article  CAS  Google Scholar 

  55. Cai Y, Chen G, Yang J, Huang P (2014) Study on thermal neutron shielding ability of new carborane-containing polyester. Funct Mater 45:7823–7830

    Google Scholar 

  56. Huang Y, Zhang W, Liang L et al (2013) A “Sandwich” type of neutron shielding composite filled with boron carbide reinforced by carbon fiber. Chem Eng J 220:143–150. https://doi.org/10.1016/j.cej.2013.01.059

    Article  CAS  Google Scholar 

  57. Bouazizi N, Abed A, Giraud S et al (2020) Development of new composite fibers with excellent UV radiation protection. Phys E Low-dimens Syst Nanostruct 118:113905. https://doi.org/10.1016/j.physe.2019.113905

    Article  CAS  Google Scholar 

  58. Ma XG, Liu Y, Chen H (2012) Discussion on the development status and process design of anti-electromagnetic wave radiation fibers. Synth Fibers 29:14–17

    Google Scholar 

  59. Okonkwo UC, Idumah CI, Okafor CE et al (2022) Development, characterization, and properties of polymeric nanoarchitectures for radiation attenuation. J Inorg Organomet Polym Mater 32:4093–4113. https://doi.org/10.1007/s10904-022-02420-y

    Article  CAS  Google Scholar 

  60. Hosseini SH, Askari M, Ezzati SN (2014) X-ray attenuating nanocomposite based on polyaniline using Pb nanoparticles. Synth Met 196:68–75. https://doi.org/10.1016/j.synthmet.2014.07.015

    Article  CAS  Google Scholar 

  61. Ma X, Liu Y, Cui H (2002) Study on the technological design and the present situation of protective fiber on electromagnetic radiation. Synth fiber 31:14–17. https://doi.org/10.16090/j.cnki.hcxw.2002.01.004

    Article  CAS  Google Scholar 

  62. Capone GJ (1995) Wet-spinning technology. Acrylic Fiber Tech & Apps 32:69–103

    Google Scholar 

  63. Gupta VB (1997) Melt-spinning processes. In: Manufactured fibre technology. Springer, Netherlands, pp 67–97

    Chapter  Google Scholar 

  64. Maghrabi HA, Vijayan A, Deb P, Wang L (2016) Bismuth oxide-coated fabrics for X-ray shielding. Text Res J 86:649–658. https://doi.org/10.1177/0040517515592809

    Article  CAS  Google Scholar 

  65. Mirzaei M, Zarrebini M, Shirani A et al (2019) X-ray shielding by a novel garment woven with melt-spun monofilament weft yarn containing lead and tin particles. Text Res J 89:63–75. https://doi.org/10.1177/0040517517736475

    Article  CAS  Google Scholar 

  66. Kim S-C (2021) Construction of a medical radiation-shielding environment by analyzing the weaving characteristics and shielding performance of shielding fibers using X-ray-impermeable materials. Appl Sci 11:1705. https://doi.org/10.3390/app11041705

    Article  CAS  Google Scholar 

  67. Zhang Y, Wang J (2016) Feasibility experiment on using boron carbide to make radiation-proof fabric fibers. Sci Technol 3:103. https://doi.org/10.15913/j.cnki.kjycx.2016.01.103

    Article  Google Scholar 

  68. Sakurai Y, Sasaki A, Kobayashi T (2004) Development of neutron shielding material using metathesis-polymer matrix. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 522:455–461. https://doi.org/10.1016/j.nima.2003.11.420

    Article  CAS  Google Scholar 

  69. Duan J, Xing XX, Jian J et al (1991) The Development trends of the study of protective fibers and materials. J Tianjin Inst Text Sci Technol 10:84–89

    Google Scholar 

  70. Yang MW, Wang CGWY (2006) Study on the relationship bet ween performance and technics during the production process of PAN fiber precursors. Mater Rev 20:156–158

    Google Scholar 

  71. Masson J (1995) Acrylic fiber technology and applications. CRC Press

    Book  Google Scholar 

  72. Qu L, Tian MZX (2014) Barium sulfate/regenerated cellulose composite fiber with X-ray radiation resistance. J Indus T Text 45:352–367

    Article  Google Scholar 

  73. Zhao XYM (2022) Wet spinning preparation and performance study of graphene fibers. Patent CN 201910668003.5

  74. Li ZL, Mou WY, Duan Y (2022) Current status and development trends of medical radiation protection clothing. China Plast 36:192–193

    Google Scholar 

  75. Wang C, Shao C, Wang L et al (2009) Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J Colloid Interface Sci 333:242–248. https://doi.org/10.1016/j.jcis.2008.12.077

    Article  CAS  PubMed  Google Scholar 

  76. Wang X, Huang L, Yuan Y (2023) Research progress of preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology. AMCS 40:1300–1310

    Google Scholar 

  77. Hazlan MH, Jamil M, Ramli RM, Noor Azman NZ (2018) X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials. Appl Phys A 124:497. https://doi.org/10.1007/s00339-018-1915-8

    Article  CAS  Google Scholar 

  78. Özcan M, Avcıoğlu S, Kaya C, Kaya F (2023) Boron carbide reinforced electrospun nanocomposite fiber mats for radiation shielding. Polym Compos 44:4155–4167. https://doi.org/10.1002/pc.27387

    Article  CAS  Google Scholar 

  79. Abdelmonem AM, Echeweozo EO (2023) Investigation of interaction parameters of gamma radiation, neutron and charge particles in selected thermoplastic polymers for radiation protection. J Mater Sci Mater Electron 34:365. https://doi.org/10.1007/s10854-022-09737-x

    Article  CAS  Google Scholar 

  80. Enayati MS, Behzad T, Sajkiewicz P et al (2016) Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment. Iran Polym J 25:647–659. https://doi.org/10.1007/s13726-016-0455-3

    Article  CAS  Google Scholar 

  81. Aral N, Nergis FB, Candan C (2017) The X-ray attenuation and the flexural properties of lead-free coated fabrics. J Ind Text 47:252–268. https://doi.org/10.1177/1528083716644287

    Article  CAS  Google Scholar 

  82. Noor Azman NZ, Siddiqui SA, Low IM (2013) Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays. Appl Phys A 110:137–144. https://doi.org/10.1007/s00339-012-7464-7

    Article  CAS  Google Scholar 

  83. Erkoyuncu İ, Akman F, Ogul H et al (2023) A detailed investigation of gamma and neutron shielding capabilities of ternary composites doped with polyacrylonitrile and gadolinium (III) sulfate. Appl Radiat Isot 196:110789. https://doi.org/10.1016/j.apradiso.2023.110789

    Article  CAS  PubMed  Google Scholar 

  84. Adeli R, Shirmardi SP, Ahmadi SJ (2016) Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiat Phys Chem 127:140–146. https://doi.org/10.1016/j.radphyschem.2016.06.026

    Article  CAS  Google Scholar 

  85. Toyen D, Paopun Y, Changjan D et al (2021) Simulation of neutron/self-emitted gamma attenuation and effects of silane surface treatment on mechanical and wear resistance properties of Sm2O3/UHMWPE composites. Polymers (Basel) 13:3390. https://doi.org/10.3390/polym13193390

    Article  CAS  PubMed  Google Scholar 

  86. Wang P, Tang X, Chai H et al (2015) Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material. Fusion Eng Des 101:218–225. https://doi.org/10.1016/j.fusengdes.2015.09.007

    Article  CAS  Google Scholar 

  87. Kim J, Lee B-C, Uhm YR, Miller WH (2014) Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites. J Nucl Mater 453:48–53. https://doi.org/10.1016/j.jnucmat.2014.06.026

    Article  CAS  Google Scholar 

  88. More CV, Alsayed Z, Badawi MS et al (2021) Polymeric composite materials for radiation shielding: a review. Environ Chem Lett 19:2057–2090. https://doi.org/10.1007/s10311-021-01189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bijanu A, Arya R, Agrawal V et al (2021) Metal-polymer composites for radiation protection: a review. J Polym Res 28:392. https://doi.org/10.1007/s10965-021-02751-3

    Article  CAS  Google Scholar 

  90. Maghrabi HA, Vijayan A, Mohaddes F et al (2016) Evaluation of X-ray radiation shielding performance of barium sulphate-coated fabrics. Fibers Polym 17:2047–2054. https://doi.org/10.1007/s12221-016-5850-z

    Article  CAS  Google Scholar 

  91. Yonphan S, Chaiphaksa W, Kalkornsurapranee E et al (2022) Development of flexible radiation shielding materials from natural Rubber/Sb2O3 composites. Radiat Phys Chem 200:110379. https://doi.org/10.1016/j.radphyschem.2022.110379

    Article  CAS  Google Scholar 

  92. Lin J-H, Chung J-C, Zeng Y-Z et al (2015) Manufacturing and property evaluations of X-ray shielding fabric and pattern making of vests. Fibers Polym 16:216–222. https://doi.org/10.1007/s12221-015-0216-5

    Article  Google Scholar 

  93. Kilincarslan S, Akkurt I, Uncu IS, Akarslan F (2016) Determination of radiation shielding properties of cotton polyester blend fabric coated with different barite rate. Acta Phys Pol A 129:878–879. https://doi.org/10.12693/APhysPolA.129.878

    Article  CAS  Google Scholar 

  94. Erenler A, Bayram T, Demirel Y et al (2020) An investigation of gamma ray mass attenuation from 80.1 to 834.86 keV for fabric coating pastes used in textile sector. Nucl Sci Tech 31:57. https://doi.org/10.1007/s41365-020-00765-y

    Article  Google Scholar 

  95. Bayoumi EE, Attia NF, Elshehy EA et al (2023) Tungsten-based hybrid nanocomposite thin film coated fabric for gamma, neutron, and X-ray attenuation. Surf Interfaces 39:102883. https://doi.org/10.1016/j.surfin.2023.102883

    Article  CAS  Google Scholar 

  96. Ma XJ (2008) Experimental study of shield gamma ray and neutron by thermal sprayed coating. Master Thesis, University of South China

  97. Bhattacharjee Y, Arief I, Bose S (2017) Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. J Mater Chem C 5:7390–7403. https://doi.org/10.1039/C7TC02172K

    Article  CAS  Google Scholar 

  98. Yin YX (2011) A kind of X-radiation protective clothing, Chinese Patent

  99. Yu L, Yap PL, Santos AMC et al (2023) Lightweight polyester fabric with elastomeric bismuth titanate composite for high-performing lead-free X-ray shielding. Radiat Phys Chem 205:1–9. https://doi.org/10.1016/j.radphyschem.2022.110726

    Article  CAS  Google Scholar 

  100. Zhao Z, Zhou J, Fan T et al (2018) An effective surface modification of polyester fabrics for improving the interfacial deposition of polypyrrole layer. Mater Chem Phys 203:89–96. https://doi.org/10.1016/j.matchemphys.2017.09.062

    Article  CAS  Google Scholar 

  101. Bartholet B (2004) Light weight radiation shielding for space environments. J Aerosp 113:359–362

    Google Scholar 

  102. Kim Y, Park S, Seo Y (2015) Enhanced X-ray shielding ability of polymer-nonleaded metal composites by multilayer structuring. Ind Eng Chem Res 54:5968–5973. https://doi.org/10.1021/acs.iecr.5b00425

    Article  CAS  Google Scholar 

  103. Park J-J, Hong S-M, Lee M-K et al (2015) Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing. Nucl Eng Des 282:1–7. https://doi.org/10.1016/j.nucengdes.2014.10.020

    Article  CAS  Google Scholar 

  104. Shang Y, Yang G, Su F et al (2020) Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos Commun 19:147–153. https://doi.org/10.1016/j.coco.2020.03.007

    Article  Google Scholar 

  105. Chang Q, Guo S, Zhang X (2023) Radiation shielding polymer composites: ray-interaction mechanism, structural design, manufacture and biomedical applications. Mater Des 233:112253. https://doi.org/10.1016/j.matdes.2023.112253

    Article  CAS  Google Scholar 

  106. Türkaslan SS, Ugur ŞS, Türkaslan BE, Fantuzzi N (2022) Evaluating the X-ray-shielding performance of graphene-oxide-coated nanocomposite fabric. Materials (Basel) 15:1441. https://doi.org/10.3390/ma15041441

    Article  CAS  PubMed  Google Scholar 

  107. Jamil MH, Putra A NM (2017) Sound absorption performance of suspended fabric. In: 4th Mechanical Engineering Research Day (MERD). pp 460–461

  108. Özdemir T, Güngör A, Akbay IK et al (2018) Nano lead oxide and epdm composite for development of polymer based radiation shielding material: gamma irradiation and attenuation tests. Radiat Phys Chem 144:248–255. https://doi.org/10.1016/j.radphyschem.2017.08.021

    Article  CAS  Google Scholar 

  109. Briesmeister JF (2000) MCNPTM—a general monte carlo N-particle transport code. Los Alamos Natl Lab 790

  110. He Y, Liu FJD et al (2022) Design of neutron/γ integrated radiation protective clothing materials based on a tungsten/gadolinium three-layer structure. Mater Reports 36:162–165. https://doi.org/10.11896/cldb.21010270

    Article  Google Scholar 

  111. Solberg TD, DeMarco JJ, Chetty IJ et al (2001) A review of radiation dosimetry applications using the MCNP Monte Carlo code. Radiochimica Acta 89:337–355

    Article  CAS  Google Scholar 

  112. He A, Xing T, Liang Z et al (2023) Advanced aramid fibrous materials: fundamentals, advances, and beyond. Adv Fiber Mater 6:3–35. https://doi.org/10.1007/s42765-023-00332-1

    Article  CAS  Google Scholar 

  113. Liang Z, Zhou Z, Li J et al (2021) Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem Eng J 415:128980. https://doi.org/10.1016/j.cej.2021.128980

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from National Natural Science Foundation of China (NSFC), No. 11802317.

Author information

Authors and Affiliations

Authors

Contributions

Shujin Wu wrote the full manuscript in origin; Jingwen Bao revised the manuscript; Yantao Gao conducted the conception and supervised the work; Wenfeng Hu and Zan Lu worked on formal analysis.

Corresponding authors

Correspondence to Yantao Gao or Wenfeng Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All research complied with the ethical guidelines and was approved by the Human Ethics Committee.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Bao, J., Gao, Y. et al. Review on flexible radiation-protective clothing materials. J Mater Sci 59, 8109–8133 (2024). https://doi.org/10.1007/s10853-024-09670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09670-w

Navigation