Skip to main content
Log in

Loss of Stability of the Blood Liquid State and Assessment of Shear-Induced Thrombosis Risk

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The loss of stability of the blood liquid state causes changes in the blood aggregation, resulting in thrombus formation. Intravascular thrombus formation is intensely studied within modern biophysics by the methods of mathematical simulation. Determining the conditions of shear-induced platelet activation has opened an opportunity for the estimation of thrombus formation risks in particular clinical settings. In this paper, a new approach is proposed to determine the risks of shear-induced thrombus formation. This approach is applicable for a wide range of objects including aorta and mechanical circulatory assist devices. The geometry of the vascular walls in numerical experiments is chosen to be isomorphic to that of the blood vessels in a human body. Promising ways to reduce the risks of thrombus formation activation in high blood flows have been found. The developed technique can be used by physicians to plan personalized strategies for antithrombotic therapy based on individual shear-induced platelet activation risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Grekhova, ed.,Autowave Processes in Systems with Diffusion [in Russian], Inst. Appl. Phys. Gorky (1981).

  2. A. V. Panfilov, H. Dierckx, and V. Volpert, Physica D, 399, 1–34 (2019). https://doi.org/10.1016/j.physd.2019.04.001

    Article  ADS  MathSciNet  Google Scholar 

  3. K. G. Guria and G.Th.Guria, Thromb. Res., 135, No. 3, 423–433 (2015). https://doi.org/10.1016/j.thromres.2014.12.014

    Article  Google Scholar 

  4. O. S. Rukhlenko, O.A.Dudchenko, K. E. Zlobina, and G.T.Guria, PLOS ONE, 10, No. 7, e0134028 (2015). https://doi.org/10.1371/journal.pone.0134028

    Article  Google Scholar 

  5. K.E. Zlobina and G.T.Guria, Sci. Rep., 6, 30508 (2016). https://doi.org/10.1038/srep30508

    Article  ADS  Google Scholar 

  6. S. Rahman, A. Fogelson, and V. Hlady, Colloids Surf. B. Biointerfaces, 193, 111118 (2020). https://doi.org/10.1016/j.colsurfb.2020.111118

    Article  Google Scholar 

  7. V.T.Turitto and C. L. Hall, Thromb. Res., 92, No. 6, S25–S31 (1998). https://doi.org/10.1016/s0049-3848(98)00157-1

    Article  Google Scholar 

  8. D. M. Wootton and D. N. Ku, Annu. Rev. Biomed. Eng., 1, 299–329 (1999). https://doi.org/10.1146/annurev.bioeng.1.1.299

    Article  Google Scholar 

  9. O.V. Rudenko, Phys. Usp., 50, No. 4, 359–367 (2007). https://doi.org/10.1070/PU2007v050n04ABEH006236

    Article  ADS  Google Scholar 

  10. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications. 2nd ed., Springer, Cham (2015).

  11. E. A. Shirshin, Y. I. Gurfinkel, A.V.Priezzhev, et al., Sci. Rep., 7., 1171, 1–10 (2017). https://doi.org/10.1038/s41598-017-01238-w

    Article  Google Scholar 

  12. G.-H. Jahng, K.-L. Li, L. Ostergaard, et al., Korean J. Radiol., 15, No. 5, 554–577 (2014). https://doi.org/10.3348/kjr.2014.15.5.554

    Article  Google Scholar 

  13. S. Zhang, A. A. Joseph, D. Voit, et al., Quant. Imaging Med. Surg., 4, No. 5, 313–329 (2014). https://doi.org/10.3978/j.issn.2223-4292.2014.06.03

    Article  Google Scholar 

  14. D. A. Ivlev, S. N. Shirinli, K. G. Guria, et al., PLOS ONE, 14, No. 2, e0211646 (2019). https://doi.org/10.1371/journal.pone.0211646

    Article  Google Scholar 

  15. L. Formaggia, A. Quarteroni, and A. Veneziani, eds., Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System , Vol. 1, Springer, Berlin (2009).

    MATH  Google Scholar 

  16. V.B. Koshelev, S. I. Mukhin, N.V. Sosnin, and A. P. Favorsky, Mathematical Models of Quasi-One-Dimensional Hemodynamics [in Russian], MAKS Press, Moscow (2010).

    Google Scholar 

  17. N. Bessonov, A. Sequeira, S. Simakov, et al., Math. Model. Nat. Phenom., 11, No. 1, 1–25 (2016). https://doi.org/10.1051/mmnp/201611101

    Article  MathSciNet  Google Scholar 

  18. D. A. Steinman and C.A.Taylor, Ann. Biomed. Eng., 33, No. 12, 1704–1709 (2005). https://doi.org/10.1007/s10439-005-8772-2

    Article  Google Scholar 

  19. D. V. Parshin, Y.O.Kuyanova, D. S. Kislitsin, et al., J. Appl. Mech. Tech. Phys., 59, No. 6, 963–970 (2018). https://doi.org/10.1134/S0021894418060019

    Article  ADS  MathSciNet  Google Scholar 

  20. C. G. Caro, T. J. Pedley, R.C. Schroter, and W. A. Seed, The Mechanics of the Circulation, Cambridge Univ. Press, Cambridge (2012).

    MATH  Google Scholar 

  21. J. Tu, K. Inthavong, and K. K. L. Wong, Computational Hemodynamics: Theory, Modeling and Applications, Springer, Dordrecht (2015).

    MATH  Google Scholar 

  22. A. Fasano and A. Sequeira, Hemomath: The Mathematics of Blood, Springer, Cham (2017).

    Book  Google Scholar 

  23. R.F. Schmidt and G. Thews, ed., Human Physiology, Springer–Verlag, Berlin–Heidelberg (1989). https://doi.org/10.1007/978-3-642-73831-9

  24. H. L. Goldsmith and V.T.Turitto, J. Thromb. Haemost., 56, No. 3, 415–435 (1986).

    Article  Google Scholar 

  25. T.G.Papaioannou and C. Stefanadis, Hellenic J. Cardiol., 46, No. 1, 9–15 (2005).

    Google Scholar 

  26. L. F. Brass and S. L. Diamond, J. Thromb. Haemost., 14, No. 5, 906–1117 (2016). https://doi.org/10.1111/jth.13280

    Article  Google Scholar 

  27. A. M. Mel’kumyants and S. A. Balashov, Arterial Endothelium Mechanosensitivity [in Russian], Triada, Moscow (2005).

    Google Scholar 

  28. M. H. Kroll, J. D. Hellums, L.V.McIntire, et al., Blood, 88, No. 5, 1525–1541 (1996).

    Article  Google Scholar 

  29. A. V. Mazurov, Platelet Physiology and Pathology [in Russian], Literra, Moscow (2011).

    Google Scholar 

  30. L. J. Wurzinger, R. Opitz, P. Blasberg, and H. Schmid-Schänbein, J. Thromb. Haemost., 53, No. 2, 381–386 (1985). https://doi.org/10.1055/s-0038-1657744

    Article  Google Scholar 

  31. C. Zhang, A. Kelkar, and S. Neelamegham, Blood Adv., 3, No. 7, 957–968 (2019). https://doi.org/10.1182/bloodadvances.2018030122

    Article  Google Scholar 

  32. D. Katritsis, L. Kaiktsis, A. Chaniotis, et al., Prog. Cardiovasc. Dis., 49, No. 5, 307–329 (2007). https://doi.org/10.1016/j.pcad.2006.11.001

    Article  Google Scholar 

  33. P. Dyverfeldt, M. Bissell, A. J. Barker, et al., J. Cardiovasc. Magn. Reson., 17, No. 1, 72 (2015). https://doi.org/10.1186/s12968-015-0174-5

    Article  Google Scholar 

  34. E. Heiberg, J. Sjögren, M. Ugander, et al., BMC Med. Imaging, 10, No. 1, 1 (2010). https://doi.org/10.1186/1471-2342-10-1

  35. M. Markl, A. Frydrychowicz, S. Kozerke, et al., J. Magn. Reson. Imaging, 36, No. 5, 1015–1036 (2012). https://doi.org/10.1002/jmri.23632

    Article  Google Scholar 

  36. L. Boussel, V. Rayz, A. Martin, et al., Magn. Reason. Med., 61, No. 2, 409–417 (2009). https://doi.org/10.1002/mrm.21861

    Article  Google Scholar 

  37. J. Szajer and K.Ho-Shon, J. Magn. Reson. Imaging, 48, 62–69 (2018). https://doi.org/10.1016/j.mri.2017.12.005

    Article  Google Scholar 

  38. G.T.Guria, Kommers. Nauka, 9, No. 9, 50–57 (2011).

    Google Scholar 

  39. A. L. Chulichkov, A.V. Nikolayev, A. I. Lobanov, and G.T.Guria, Mat. Model ., 12, No. 3, 75–96 (2000).

  40. A.P. Guzevatykh, A. I. Lobanov, and G.T.Guria, Mat. Model ., 12, No. 4, 39–60 (2000).

  41. A. Lobanov and T. Starozhilova, Pathophysiol. Haemost. Thromb., 34, Nos. 2–3, 121–134 (2005). https://doi.org/10.1159/000089932

    Article  Google Scholar 

  42. D. Basmadjian, M. Sefton, and S. Baldwin, Biomaterials, 18, No. 23, 1511–1522 (1997). https://doi.org/10.1016/S0142-9612(97)80002-6

    Article  Google Scholar 

  43. A. L. Fogelson and R.D.Guy, Math. Med. Biol., 21, No. 4, 293–334 (2004). https://doi.org/10.1093/imammb/21.4.293

    Article  Google Scholar 

  44. S. Cito, M.D.Mazzeo, and L. Badimon, Thromb. Res., 131, No. 2, 116–124 (2013). https://doi.org/10.1016/j.thromres.2012.11.020

    Article  Google Scholar 

  45. M. Anand and K.R.Rajagopal, Fluids, 2, No. 3, 35 (2017). https://doi.org/10.3390/fluids2030035

    Article  Google Scholar 

  46. S. Yesudasan and R.D.Averett, Comput. Biol. Chem., 83, 107148 (2019). https://doi.org/10.1016/j.compbiolchem.2019.107148

    Article  Google Scholar 

  47. F. Shen, C. J. Kastrup, Y. Liu, and R.F. Ismagilov, Arterioscler. Thromb. Vasc. Biol ., 28, No. 11, 2035–2041 (2008). https://doi.org/10.1161/ATVBAHA.108.173930

  48. A. I.Vorob’ev, V.M.Gorodetsky, E. M. Shuludko, and S.A.Vasyl’ev, Sharp Massive Blood Loss [in Russian], GEOTAR-MED, Moscow (2001).

    Google Scholar 

  49. D. Zipes, P. Libby, R. Bonow, et al., eds., Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 11th ed., WB Saunders Company, Philadelphia (2018).

  50. Z. M. Ruggeri, Thromb. Haemost., 70, No. 1, 119–123 (1993).

    Article  Google Scholar 

  51. A. Michelson, ed., Platelets. 3rd ed., Academic Press, Amsterdam (2013).

  52. S. Goto, Y. Ikeda, E. Saldívar, and Z. M. Ruggeri, J. Clin. Invest., 101, No. 2, 479–486 (1998). https://doi.org/10.1172/JCI973

    Article  Google Scholar 

  53. H. Shankaran, P. Alexandridis, and S. Neelamegham, Blood, 101, No. 7, 2637–2645 (2003). https://doi.org/10.1182/blood-2002-05-1550

    Article  Google Scholar 

  54. I. Singh, E. Themistou, L. Porcar, and S. Neelamegham, Biophys. J ., 96, No. 6, 2313–2320 (2009). https://doi.org/10.1016/j.bpj.2008.12.3900

  55. L. D.C.Casa, D.H. Deaton, and D.N.Ku, J. Vasc. Surg., 61, No. 4, 1068–1080 (2015). https://doi.org/10.1016/j.jvs.2014.12.050

    Article  Google Scholar 

  56. D. Kim, C. Bresette, Z. Liu, and D. N. Ku, APL Bioeng., 3, No. 4, 041502 (2019). https://doi.org/10.1063/1.5115554

    Article  Google Scholar 

  57. V. Huck, M. F. Schneider, C. Gorzelanny, and S.W. Schneider, J. Thromb. Haemost., 111, No. 4, 598–609 (2014). https://doi.org/10.1160/TH13-09-0800

    Article  Google Scholar 

  58. Y. Jiang, H. Fu, T.A. Springer, and W. P. Wong, J. Mol. Biol ., 431, No. 7, 1380–1396 (2019). https://doi.org/10.1016/j.jmb.2019.02.014

  59. A. Rana, E. Westein, B. E. Niego, and C.E.Hagemeyer, Front. Cardiovasc. Med., 6, 141 (2019). https://doi.org/10.3389/fcvm.2019.00141

    Article  Google Scholar 

  60. Y. Qiu, J. Ciciliano, D.R.Myers, et al., Blood Rev ., 29, No. 6, 377–386 (2015). https://doi.org/10.1016/j.blre.2015.05.002

  61. E. Di Stasio and R. De Cristofaro, Biophys. Chem., 153, No. 1, 1–8 (2010). https://doi.org/10.1016/j.bpc.2010.07.002

    Article  Google Scholar 

  62. H. Horiuchi, T. Doman, K. Kokame, et al., J. Atheroscler. Thromb., 26, No. 4, 303–314 (2019). https://doi.org/10.5551/jat.RV17031

    Article  Google Scholar 

  63. R. K. Andrews, J. López, and M.C. Berndt, Int. J. Biochem. Cell. Biol ., 29, No. 1, 91–105 (1997). https://doi.org/10.1016/S1357-2725(96)00122-7

  64. N. A. Mody and M.R.King, Biophys. J ., 95, No. 5, 2556–2574 (2008). https://doi.org/10.1529/biophysj.107.128520

  65. T. A. Springer, Blood, 124, No. 9, 1412–1425 (2014). https://doi.org/10.1182/blood-2014-05-378638

    Article  Google Scholar 

  66. S. W. Schneider, S. Nuschele, A. Wixforthet, et al., PNAS, 104, No. 19, 7899–7903 (2007). https://doi.org/10.1073/pnas.0608422104

    Article  ADS  Google Scholar 

  67. S. Gogia and S. Neelamegham, Biorheology, 52, Nos. 5–6, 319–335 (2015). https://doi.org/10.3233/BIR15061

    Article  Google Scholar 

  68. A. Löf, J.P.M¨uller, and M.A.Brehm, J. Cell. Physiol., 233, No. 2, 799–810 (2018). https://doi.org/10.1002/jcp.25887

  69. R. M. Vergauwe, H.Uji-i, K. De Ceunynck, et al., J. Phys. Chem. B., 118, No. 21, 5660–5669 (2014). https://doi.org/10.1021/jp5022664

    Article  Google Scholar 

  70. S. Lancellotti, M. Sacco, M. Basso, and R. De Cristofaro, Biomol. Concepts, 10, No. 1, 194–208 (2019). https://doi.org/10.1515/bmc-2019-0022

    Article  Google Scholar 

  71. S. Goto, D.R. Salomon, Y. Ikeda, and Z. M. Ruggeri, J. Clin. Chem., 270, 23352–23361 (1995). https://doi.org/10.1074/jbc.270.40.23352

    Article  Google Scholar 

  72. J. L. Moake, N. A. Turner, N.A. Stathopoulos, et al., J. Clin. Invest., 78, No. 6, 1456–1461 (1986). https://doi.org/10.1172/JCI112736

    Article  Google Scholar 

  73. M. Stockschlaeder, R. Schneppenheim, and U. Budde, Blood Coagul. Fibrinolysis, 25, No. 3, 206–216 (2014). https://doi.org/10.1097/MBC.0000000000000065

    Article  Google Scholar 

  74. A. J. Reininger, Hämostaseologie, 35, No. 3, 225–233 (2015). https://doi.org/10.5482/HAMO-14-12-0077

    Article  Google Scholar 

  75. A. Alexander-Katz and R.R.Netz, Macromolecules, 41, No. 9, 3363–3374 (2008). https://doi.org/10.1021/ma702331d

    Article  ADS  Google Scholar 

  76. D.M. Pushin, T.Y. Salikhova, K.E. Zlobina, and G. Th. Guria, PLOS ONE, 15, No. 6, e0234501 (2020). https://doi.org/10.1371/journal.pone.0234501

    Article  Google Scholar 

  77. G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge (2000).

    Book  Google Scholar 

  78. K. Tesch, Task Quarterly, 17, Nos. 3–4, 1000–1008 (2013).

    Google Scholar 

  79. D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, California (2006).

    Google Scholar 

  80. J. Ferziger, M. Peri´c, and R. Street, eds., Computational Method for Fluid Dynamics. 4th ed., Springer, Cham (2020).

  81. F. R. Menter, AIAA J ., 32, No. 8, 1598–1605 (1994).

  82. https://www.osirix-viewer.com/resources/dicom-image-library/

  83. M.Q. Najib, R.K.Wong, C.N. Pierce, et al., Eur. Heart J. Cardiovasc. Imaging., 13, No. 6, 532 (2012). https://doi.org/10.1093/ehjci/jes011

    Article  Google Scholar 

  84. M. Capoccia, C.T. Bowles, A. Sabashnikov, and A. Simon, J. Investig. Med. High Impact Case Rep., 1, No. 2, 2324709613490676 (2013). https://doi.org/10.1177/2324709613490676

    Article  Google Scholar 

  85. J.K.Kirklin, D.C.Naftel, F. D. Pagani, et al., J. Heart Lung Transpl., 34, No. 12, 1515–1526 (2015). https://doi.org/10.1016/j.healun.2015.10.024

    Article  Google Scholar 

  86. S. S. Brukhonenko, Sbornik Tr. Inst. Éksp. Fiziol. Terapii, No. 1, 32–34 (1937).

    Google Scholar 

  87. S.V.Gautier, G.P. Itkin, A. O. Shevchenko, et al., Vestnik Transplant. Iskusstv. Org., 18, No. 3, 128–136 (2016). https://doi.org/10.15825/1995-1191-2016-3-128-136

  88. B. B. Chung, G. Sayer, and N. Uriel, Expert Rev. Med. Dev., 14, No. 5, 343–353 (2017). https://doi.org/10.1080/17434440.2017.1324292

    Article  Google Scholar 

  89. J. N. Kirkpatrick, G. Wieselthaler, M. Strueber, et al., Heart, 101, 1091–1096 (2015). https://doi.org/10.1136/heartjnl-2014-306789

    Article  Google Scholar 

  90. G.P. Itkin, A. S. Buchnev, A. P. Kuleshov, and A. I. Syrbu, Vestnik Transplant. Iskusstv. Org., 21, No. 1, 71–76 (2019). https://doi.org/10.15825/1995-1191-2019-1-71-76

  91. R. J. Miller, J. J. Teuteberg, and S.A.Hunt, Annu. Rev. Med., 70, 33–44 (2019). https://doi.org/10.1146/annurev-med-041217-011015

    Article  Google Scholar 

  92. S. S. Najjar, M. S. Slaughter, F. D. Pagani, et al., J. Heart Lung Transpl ., 33, No. 1, 23–34 (2014). https://doi.org/10.1016/j.healun.2013.12.001

  93. W.K.Cornwell III, A.V.Ambardekar, T. Tran, et al., Stroke, 50, No. 2, 542–548 (2019). https://doi.org/10.1161/STROKEAHA.118.022967

    Article  Google Scholar 

  94. D. Bluestein, Y. M. Li, and I. B. Krukenkamp, J. Biomech., 35, No. 12, 1533–1540 (2002). https://doi.org/10.1016/S0021-9290(02)00093-3

    Article  Google Scholar 

  95. M. J. Slepian, J. Sheriff, M. Hutchinson, et al., J. Biomech., 50, 20–25 (2017). https://doi.org/10.1016/j.jbiomech.2016.11.016

    Article  Google Scholar 

  96. G. Girdhar, M. Xenos, Y. Alemu, et al., PLOS ONE, 7, No. 3, e32463 (2012). https://doi.org/10.1371/journal.pone.0032463

    Article  ADS  Google Scholar 

  97. W.T.Wu, F. Yang, J. Wu, et al., Sci. Rep., 6, 38025 (2016). https://doi.org/10.1038/srep38025

    Article  ADS  Google Scholar 

  98. G. Fuchs, N. Berg, L. M. Broman, and L.P. Wittberg, Sci. Rep., 9, 8809 (2019). https://doi.org/10.1038/s41598-019-45121-2

    Article  ADS  Google Scholar 

  99. W. C. Chiu, P. L. Tran, Z. Khalpey, et al., Sci. Rep., 9, 2946 (2019). https://doi.org/10.1038/s41598-019-39897-6

    Article  ADS  Google Scholar 

  100. P. Pathmanathan, R.A.Gray, V. J. Romero, and T. M. Morrison,J. Verif. Valid. Uncertain. Quantif ., 2, No. 2, 021005 (2017). https://doi.org/10.1115/1.4037671

    Article  Google Scholar 

  101. A. Blitz, Ann. Cardiothorac. Surg., 3, No. 5, 450–471 (2014). https://doi.org/10.3978/j.issn.2225319X.2014.09.10

    Article  Google Scholar 

  102. T. M. Morrison, P. Hariharan, C. M. Funkhouser, et al., ASAIO J ., 65, No. 4, 349–360 (2019). https://doi.org/10.1097/MAT.0000000000000996

  103. https://cstools.asme.org/csconnect/CommitteePages.cfm? Committee=100108782

  104. R. A. Malinauskas, P. Hariharan, S.W.Day, et al., ASAIO J ., 63, No. 2, 150–160 (2017). https://doi.org/10.1097/MAT.0000000000000499

  105. C. Jhun, C. Siedlecki, L. Xu, et al., Artif. Organs, 43, No. 2, 199–206 (2018). https://doi.org/10.1111/aor.13323

    Article  Google Scholar 

  106. M. Bortot, K. Ashworth, A. Sharifi, et al., Arterioscler. Thromb. Vasc. Biol ., 39, No. 9, 1831–1842 (2019). https://doi.org/10.1161/ATVBAHA.119.312814

  107. Z. Chen, A. Sun, and H. Wang, et al., Medicine Novel Tech. Dev., 3, 100024 (2019). https://doi.org/10.1016/j.medntd.2019.100024

    Article  Google Scholar 

  108. A. L. Marsden, Y. Bazilevs, C.C. Long, et al., Wiley Interdiscip. Rev. Syst. Biol. Med., 6, No. 2, 169–188. https://doi.org/10.1002/wsbm.1260

  109. M. Selmi, W.C.Chiu, V.K.Chivukula, et al., Int. J. Artif. Organs., 42, No. 3, 113–124 (2019). https://doi.org/10.1177/0391398818806162

    Article  Google Scholar 

  110. P. D. Morris, A. Narracott, H. von Tengg-Kobligk, et al., Heart, 102, No. 1, 18–28 (2016). https://doi.org/10.1136/heartjnl-2015-308044

    Article  Google Scholar 

  111. R. A. Gray and P. Pathmanathan, J. Cardiovasc. Transl. Res., 11, 80–88 (2018). https://doi.org/10.1007/s12265-018-9792-2

    Article  Google Scholar 

  112. C. A. Taylor, T.A. Fonte, and J.K. Min, J. Am. Coll. Cardiol ., 61, No. 22, 2233–2241 (2013). https://doi.org/10.1016/j.jacc.2012.11.083

    Article  Google Scholar 

  113. R. Sadeghi, S. Khodaei, J. Ganame, and Z.Keshavarz-Motamed, Sci. Rep., 10, 9048 (2020). https://doi.org/10.1038/s41598-020-65576-y

    Article  ADS  Google Scholar 

  114. V. A. Tkachuk, ed., Clinical Biochemistry [in Russian], GEOTAR-MED, Moscow (2004).

    Google Scholar 

  115. N. S. Key, M. Makris, and D. Lillicrap, eds., Practical Hemostasis and Thrombosis. 3rd ed., Wiley–Blackwell, Hoboken (2017).

  116. M. V. Samsonov, A.Y.Khapchaev, A.V.Vorotnikov, et al., Oxid. Med. Cell. Longev., 2017, 1625130 (2017). https://doi.org/10.1155/2017/1625130

    Article  Google Scholar 

  117. L. Teuwen, V. Geldhof, A. Pasut, et al., Nat. Rev. Immunol ., 20, No. 7, 389–391 (2020). https://doi.org/10.1038/s41577-020-0343-0

  118. Z. Varga, A. J. Flammer, P. Steiger, et al., Lancet, 395, No. 10234, 1417–1418 (2020). https://doi.org/10.1016/S0140-6736(20)30937-5

    Article  Google Scholar 

  119. A. S. Rukhlenko, “Mathematical modeling of thrombosis processes in intensive blood flows,” Ph.D. Thesis” [in Russian], Moscow Inst. Phys. Technol., Dolgoprudny (2013).

  120. D. Bluestein, L. Niu, R.T. Schoephoerster, M.K. Dewanjee, Ann. Biomed. Eng., 25, 344–356 (1997). https://doi.org/10.1007/BF02648048

    Article  Google Scholar 

  121. Y.Roka-Moiia, R. Walk, D. E. Palomares, et al., Thromb. Haemost., 120, No. 5, 776–792 (2020). https://doi.org/10.1055/s-0040-1709524

    Article  Google Scholar 

  122. Y. N. Avtaeva, I. S. Mel’nikov, and Z. A. Gabbasov, Bull. Exp. Biol. Med., 165, No. 1, 157–160 (2018). https://doi.org/10.1007/s10517-018-4119-5

    Article  Google Scholar 

  123. R. Radovancevic, N. Matijevic, A.W.Bracey, et al., ASAIO J ., 55, No. 5, 459–464 (2009). https://doi.org/10.1097/MAT.0b013e3181b235af

  124. S.R.Topper, M.A.Navitsky, R. B. Medvitz, et al., Cardiovasc. Eng. Techn., 5, 54–69 (2014). https://doi.org/10.1007/s13239-014-0174-x

    Article  Google Scholar 

  125. K. Bourque, C. Cotter, C. Dague, et al., ASAIO J ., 62, No. 4, 375–383 (2016). https://doi.org/10.1097/MAT.0000000000000388

  126. S. Sukavaneshvar, Adv. Drug Deliv. Rev., 112, 24–34 (2017). https://doi.org/10.1016/j.addr.2016.07.009

    Article  Google Scholar 

  127. W. Huberts, S. G. Heinen, N. Zonnebeld, et al., J. Comput. Sci ., 24, 68–84 (2018). https://doi.org/10.1016/j.jocs.2017.07.006

  128. P. Hariharan, G. A. D’Souza, M. Horner, et al., PLOS ONE, 12, No. 6, e0178749 (2017). https://doi.org/10.1371/journal.pone.0178749

    Article  Google Scholar 

  129. L. Goubergrits and K. Affeld, Artif. Organs, 28, No. 5, 499–507 (2004). https://doi.org/10.1111/j.15251594.2004.07265.x

    Article  Google Scholar 

  130. H. Yu, S. Engel, G. Janiga, D. Thévenin, Artif. Organs, 41, No. 7, 603–621 (2017). https://doi.org/10.1111/aor.12871

    Article  Google Scholar 

  131. J. D. Hellums, Ann. Biomed. Eng., 22, 445–455 (1994). https://doi.org/10.1007/BF02367081

    Article  Google Scholar 

  132. H. Lee, G. Kim, C. Lim, et al., Biomicrofluidics, 10, No. 6, 064118 (2016). https://doi.org/10.1063/1.4972077

    Article  Google Scholar 

  133. H.C.Hemker, R. Al Dieri, S. Béguin, Front. Med., 6, 254 (2019). https://doi.org/10.3389/fmed.2019.00254

    Article  Google Scholar 

  134. K. G. Guria, A.R. Gagarina, and G.T.Guria, J. Theor. Biol ., 304, 27–38 (2012). https://doi.org/10.1016/j.jtbi.2012.03.031

  135. D. P. Faxon, Nat. Clin. Pract. Cardiovasc. Med., 2, 22–28 (2005). https://doi.org/10.1038/ncpcardio0065

    Article  Google Scholar 

  136. A. Meretoja, M. Keshtkaran, J. L. Saver, et al., Stroke, 45, No. 4, 1053–1058 (2014). https://doi.org/10.1161/STROKEAHA.113.002910

    Article  Google Scholar 

  137. S. G. Uzlova, K.G.Guria, A.A. Shevelev, et al., Bull. A.N.Bakulev Nats. Tsentr Serd.-Sosud. Zabolev ., 9, No. 6, 55–64 (2008).

  138. S. G. Uzlova, K.G.Guria, and G.T.Guria, Philos. Trans. Roy. Soc. A, 366, No. 1880, 3649–3661 (2008). https://doi.org/10.1098/rsta.2008.0109

    Article  ADS  Google Scholar 

  139. D. A. Ivlev, Sh. N. Shirinli, S. G. Uzlova, and K. G. Guria, Biophysics, 63, No. 4, 637–643 (2018). https://doi.org/10.1134/S0006350918040085

    Article  Google Scholar 

  140. C. D. Gerardo, E. Cretu, and R. Rohling, Microsyst. Nanoeng., 4, 19 (2018). https://doi.org/10.1038/s41378-018-0022-5

    Article  ADS  Google Scholar 

  141. S. Merouche, L. Allard, and E. Montagnon, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control ., 63, No. 1, 35–46 (2015). https://doi.org/10.1109/TUFFC.2015.2499084

  142. N. V. Rybalko, O. I. Vinogradov, and A. N. Kuznetsov, Nevrol. Zh., 20, No. 5, 14–18 (2015).

    Article  Google Scholar 

  143. T. Knebel and J. J. Neumiller, Clin. Diab., 37, No. 1, 94–95 (2019). https://doi.org/10.2337/cd18-0067

    Article  Google Scholar 

  144. K. Hasan, K. Biswas, K. Ahmed, et al., J. Netw. Comp. Appl., 143, 178–198 (2019). https://doi.org/10.1016/j.jnca.2019.06.016?

    Article  Google Scholar 

  145. L. Antiga, B. Ene-Iordache, and A. Remuzzi, IEEE Trans. Med. Imaging, 22, No. 5, 674–684 (2003). https://doi.org/10.1109/TMI.2003.812261

    Article  Google Scholar 

  146. W. Lorensen and H. Cline, ACM SIGGRAPH, 21, No. 4, 163–169 (1987). https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  147. M. Bozzetto, B. Ene-Iordache, and A. Remuzzi, Ann. Biomed. Eng., 44, No. 8, 2388–2401 (2016). https://doi.org/10.1007/s10439-015-1525-y

    Article  Google Scholar 

  148. L. Antiga, M. Piccinelli, L. Botti, et al., Med. Biol. Eng. Comput ., 46, No. 11, 1097–1112 (2008). https://doi.org/10.1007/s11517-008-0420-1

  149. A. Wittek, N. Grosland, G. Joldes, et al., Ann. Biomed. Eng., 44, No. 1, 3–15 (2016). https://doi.org/10.1007/s10439-015-1469-2

    Article  Google Scholar 

  150. https://cfmesh.com/

  151. T. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge Univ. Press, Cambridge (1980).

    Book  Google Scholar 

  152. C. J. Nassau, T. J. Wray, and R.K. Agarwal, in: FEDSM 2015, July 26–31, 2015, Seoul, South Korea, p. V002T26A002. https://doi.org/10.1115/AJKFluids2015-26131

  153. A. Ribes and C. Caremoli, in: COMPSAC 2007, July 24–27, 2007, Beijing, China, pp. 553–564. https://doi.org/10.1109/COMPSAC.2007.185

  154. C. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York (1980).

    MATH  Google Scholar 

  155. R. Issa, J. Comp. Phys., 62, No. 1, 40–65 (1986). https://doi.org/10.1016/0021-9991(86)90099-9

  156. M. Bozzetto, P. Brambilla, S. Rota, et al., Int. J. Artif. Organs, 41, No. 11, 714–722 (2018). https://doi.org/10.1177/0391398818784207

    Article  Google Scholar 

  157. F. Menter and T. Esch, in: COBEM 2001, November 26–30, 2001, Uberlˆandia, Brazil, pp. 1–11.

  158. H. Jasak, in: 47th AIAA Aerospace Sciences Meeting, January 5–8, 2009, Orlando, USA, pp. 1–10. https://doi.org/10.2514/6.2009-341

  159. H. Jasak, Inter. J. Nav. Archit. Oc. Engin., 1, No. 2, 89–94 (2009). https://doi.org/10.2478/IJNAOE20130011

    Article  Google Scholar 

  160. J. Ahrens, B. Geveci, and C. Law, in: C.D.Hansen and C.R. Johnson, eds., The Visualization Handbook, Butterworth–Heinemann, Burlington, MA, pp. 717–731 (2005). https://doi.org/10.1016/B9780123875822/50038-1

  161. T. Kenner, Basic. Res. Cardiol ., 84, No. 2, 111–124 (1989). https://doi.org/10.1007/BF01907921

  162. C. A. Taylor and C.A. Figueroa, Annu. Rev. Biomed. Eng., 11, 109–134 (2009). https://doi.org/10.1146/annurev.bioeng.10.061807.160521

    Article  Google Scholar 

  163. D. Lesage, E.D.Angelini, I. Bloch, and G. Funka-Lea, Med. Image Anal., 13, No. 6, 819–845 (2009). https://doi.org/10.1016/j.media.2009.07.011

    Article  Google Scholar 

  164. S. Moccia, E. De Momi, S. El Hadji, and L. S. Mattos, Comput. Meth. Prog. Bio., 58, 71–91 (2018). https://doi.org/10.1016/j.cmpb.2018.02.001

    Article  Google Scholar 

  165. F. Zhao, Y. Chen, Y. Hou, and X. He, Multimedia Systems, 25, No. 2, 109–118 (2019). https://doi.org/10.1007/s00530-017-0580-7

    Article  Google Scholar 

  166. A. Updegrove, N. Wilson, J. Merkow, et al., Ann. Biomed. Eng., 45, 525–541 (2016). https://doi.org/10.1007/s10439-016-1762-8

    Article  Google Scholar 

  167. S. Lippok, T. Obser, J. P. Müller, et al., Biophys. J ., 105, No. 5, 1208–1216 (2013). https://doi.org/a10.1016/j.bpj.2013.07.037

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Pushin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 894–918, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushin, D.M., Salikhova, T.Y., Biryukova, L.S. et al. Loss of Stability of the Blood Liquid State and Assessment of Shear-Induced Thrombosis Risk. Radiophys Quantum El 63, 804–825 (2021). https://doi.org/10.1007/s11141-021-10097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10097-5

Navigation