Skip to main content
Log in

The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

We compare the velocity and shear obtained from particle image velocimetry (PIV) and computational fluid dynamics (CFD) in a pulsatile ventricular assist device (VAD) to further test our thrombus predictive methodology using microscopy data from an explanted VAD. To mimic physiologic conditions in vitro, a mock circulatory loop was used with a blood analog that matched blood’s viscoelastic behavior at 40% hematocrit. Under normal physiologic pressures and for a heart rate of 75 bpm, PIV data is acquired and wall shear maps are produced. The resolution of the PIV shear rate calculations are tested using the CFD and found to be in the same range. A bovine study, using a 50 cc Penn State V-2 VAD, for 30 days at a constant beat rate of 75 beats per minute (bpm) provides the microscopic data whereby after the 30 days, the device is explanted and the sac surface analyzed using scanning electron microscopy (SEM) and, after immunofluorescent labeling for platelets and fibrin, confocal microscopy. Areas are examined based on PIV measurements and CFD, with special attention to low shear regions where platelet and fibrin deposition are most likely to occur. Data collected within the outlet port in a direction normal to the front wall of the VAD shows that some regions experience wall shear rates less than 500 s−1, which increases the likelihood of platelet and fibrin deposition. Despite only one animal study, correlations between PIV, CFD, and in vivo data show promise. Deposition probability is quantified by the thrombus susceptibility potential, a calculation to correlate low shear and time of shear with deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Balasubramanian, V., and S. M. Slack. The effect of fluid shear and co-adsorbed proteins on the stability of immobilized fibrinogen and subsequent platelet interactions. J. Biomater. Sci. Polym. Ed. 13:543–561, 2002.

    Article  Google Scholar 

  2. Cooper, B. T., B. N. Roszelle, T. C. Long, S. Deutsch, and K. B. Manning. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection. J. Biomech. Eng. 130(4):041019, 2008.

    Article  Google Scholar 

  3. Crowe, C. T., M. Sommerfeld, and Y. Tsuji. Multiphase Flows with Droplets and Particles. Boca Raton, FL: CRC Press, 1998.

    Google Scholar 

  4. Gorbet, M. B., and M. V. Sefton. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703, 2004.

    Article  Google Scholar 

  5. Hernandez, A. F., A. M. Shea, C. A. Milano, J. G. Rogers, B. G. Hammill, C. M. O’Connor, K. A. Schulman, E. D. Peterson, and L. H. Curtis. Long-term outcomes and costs of ventricular assist devices among Medicare beneficiaries. JAMA 300(20):2398–2406, 2008.

    Article  Google Scholar 

  6. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Fluid dynamic analysis of the 50 cc Penn State artificial heart under physiological operating conditions using particle image velocimetry. J. Biomech. Eng. 126:585–593, 2004.

    Article  Google Scholar 

  7. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Correlation of in vivo clot deposition with the flow characteristics in the 50 cc Penn State artificial heart: a preliminary study. ASAIO J. 50(6):537–542, 2004.

    Article  Google Scholar 

  8. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:430–437, 2004.

    Article  Google Scholar 

  9. Hubbell, J. A., and L. V. McIntire. Visualization and analysis of mural thrombogenesis on collagen, polyurethane and nylon. Biomaterials 7:354–363, 1986.

    Article  Google Scholar 

  10. Jen, C. J., H.-M. Li, J.-S. Wang, H. Chen, and S. Usami. Flow-induced detachment of adherent platelets from fibrinogen-coated surface. Am. J. Physiol. 270 (Heart Circ Physiol 39):H160–H166, 1996.

  11. Kim, J., G. Ryu, I. Shin, K. Lee, D. Han, Y. Kim, and B. Min. Effect of shear rates on protein adsorption in the total artificial heart. ASAIO J. 38:M532–M535, 1992.

    Article  Google Scholar 

  12. Kirklin, J. K., D. C. Naftel, R. L. Kormos, L. W. Stevenson, F. D. Pagani, M. A. Miller, J. T. Baldwin, and J. B. Young. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J. Heart Lung Transpl. 32(2):141–156, 2013.

    Article  Google Scholar 

  13. Kreider, J., K. B. Manning, L. A. Oley, A. A. Fontaine, and S. Deutsch. The 50 cc Penn State LVAD: a parametric study of valve orientation flow dynamics. ASAIO J. 52:123–131, 2006.

    Article  Google Scholar 

  14. Long, J. A., A. Undar, K. B. Manning, and S. Deutsch. Viscoelasticity of pediatric blood and its implications of the testing of a pulsatile pediatric blood pump. ASAIO J. 51:63–566, 2005.

    Article  Google Scholar 

  15. Medvitz, R. B., J. W. Kreider, K. B. Manning, A. A. Fontaine, S. Deutsch, and E. G. Paterson. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 53(2):122–131, 2007.

    Article  Google Scholar 

  16. Medvitz, R. B., V. Reddy, S. Deutsch, K. B. Manning, and E. G. Paterson. Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. J. Biomech. Eng. 131(10):111009, 2009.

    Article  Google Scholar 

  17. Mehta, S., W. Pae, G. Rosenberg, A. J. Snyder, W. J. Weiss, J. P. Lewis, D. J. Frank, J. J. Thompson, and W. S. Pierce. The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann. Thorac. Surg. 71:156–161, 2001.

    Article  Google Scholar 

  18. Milner, K. R., A. J. Snyder, and C. A. Siedlecki. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials. J. Biomed. Mater. Res. A 76A(3):561–570, 2006.

    Article  Google Scholar 

  19. Nanna, J. C., M. A. Navitsky, S. R. Topper, S. Deutsch, and K. B. Manning. A fluid dynamics study in a 50 cc pulsatile ventricular assist device: influence of heart rate variability. J. Biomech. Eng. 133(10):101002, 2011.

    Article  Google Scholar 

  20. Nanna, J. C., J. A. Wivholm, S. Deutsch, and K. B. Manning. Flow field study comparing design iterations of a 50 cc left ventricular assist device. ASAIO J. 57(5):349–357, 2011.

    Article  Google Scholar 

  21. Navitsky, M. A., S. Deutsch, and K. B. Manning. A thrombus susceptibility comparison of two pulsatile Penn State 50 cc left ventricular assist device designs. Ann. Biomed. Eng. 41(1):4–16, 2013.

    Article  Google Scholar 

  22. Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, et al. Heart disease and stroke statistics—2011 update, a report from the American Heart Association. Circulation 123:18–209, 2011.

    Article  Google Scholar 

  23. Rosenberg, G., W. M. Phillips, D. L. Landis, and W. S. Pierce. Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO J. 4:41–49, 1981.

    Google Scholar 

  24. Roszelle B. The 12 cc Penn State pediatric ventricular assist device: a flow visualization study of bridge-to-recovery and weaning. PhD thesis, The Pennsylvania State University. 2010.

  25. Shreenivas, S., J. Rame, and M. Jessup. Mechanical circulatory support as a bridge to transplant or for destination therapy. Curr. Heart Fail Rep. 7:159–166, 2010.

    Article  Google Scholar 

  26. Yamanaka, H., G. Rosenberg, W. J. Weiss, A. J. Snyder, C. M. Zapanta, and C. A. Siedlecki. Multiscale analysis of surface thrombosis in vivo in a left ventricular assist system. ASAIO J. 51(5):567–577, 2005.

    Article  Google Scholar 

  27. Yamanaka, H., G. Rosenberg, W. J. Weiss, A. J. Snyder, C. M. Zapanta, and C. A. Siedlecki. Short-term in vivo studies of surface thrombosis in a left ventricular assist system. ASAIO J. 52(3):257–265, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the National Institutes of Health for their support of this project through NIH NHLBI HL60276. Stephen R. Topper, Michael A. Navitsky, Richard B. Medvitz, Eric G. Paterson, Christopher A. Siedlecki, Margaret J. Slattery, Steven Deutsch, Gerson Rosenberg, and Keefe B. Manning declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees (Penn State IACUC #97104). No human studies were carried out by the authors for this article.

Conflicts of Interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Additional information

Associate Editor Steven C. George oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topper, S.R., Navitsky, M.A., Medvitz, R.B. et al. The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs. Cardiovasc Eng Tech 5, 54–69 (2014). https://doi.org/10.1007/s13239-014-0174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0174-x

Keywords

Navigation