Skip to main content

Advertisement

Log in

Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Shear stresses play a major role in platelet-substrate interactions and thrombus formation and growth in blood flow, where under both pathological and physiological conditions platelet adhesion and accumulation occur. In this study, a shear-dependent continuum model for platelet activation, adhesion and aggregation is presented. The model was first verified under three different shear conditions and at two heparin levels. Three-dimensional simulations were then carried out to evaluate the performance of the model for severely damaged (stripped) aortas with mild and severe stenosis degrees in laminar flow regime. For these cases, linear shear-dependent functions were developed for platelet-surface and platelet–platelet adhesion rates. It was confirmed that the platelet adhesion rate is not only a function of Reynolds number (or wall shear rate) but also the stenosis severity of the vessel. General correlations for adhesion rates of platelets as functions of stenosis and Reynolds number were obtained based on these cases. Finally using the new platelet adhesion rates, the model was applied to different experimental systems and shown to agree well with measured platelet deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

A ROI :

Region of interest area (mm2)

C i :

Concentration of species i (PLT−1 mL, μM, U mL−1)

D i :

Total mass diffusivity of species i (m2 s−1)

D b,i :

Brownian diffusivity of species i (m2 s−1)

D s,i :

Enhanced diffusivity of species i (m2 s−1)

[H]:

Heparin concentration (U mL−1)

\(k_{{1,{\text{TxA}}_{2} }}\) :

Reaction rate constant for inhibition of TxA2 (s−1)

k rs :

Resting platelet-surface adhesion rate (cm s−1)

k as :

Activated platelet-surface adhesion rate (cm s−1)

k aa :

Activated platelet–platelet adhesion rate (cm s−1)

L :

Half width of the channel, tube radius (cm)

L mar :

Platelet margination length scale (m)

\(M_{\infty }\) :

Capacity of surface for first platelet layer (PLT cm−2)

M as :

Surface coverage due to resting platelets (PLT cm−2)

M as :

Surface coverage due to activated platelets (PLT cm−1)

M at :

Deposition due to activated platelets (PLT cm−1)

N :

Average near-wall platelet count (PLT cm−3)

\(Q_{\text{intial}}\) :

Initial flow rate applied at the stenosed channel inlet (mL s−1)

\(Q_{\text{mean}}\) :

Mean flow rate averaged over total perfusion time (mL s−1)

\(R_{\text{acc}}\) :

Number of accumulated platelets per unit time (PLT s−1)

\(R_{RBC}\) :

Radius of red blood cell (m)

\(Re\) :

Reynolds number at inlet

\(Re_{\text{apex}}\) :

Reynolds number at the apex

\(s_{{p,{\text{TxA}}_{2} }}\) :

Rate of synthesis of TxA2 by platelet (nmol PLT s−1)

S :

Available free surface

\(t_{\text{qss}}\) :

Simulation time corresponding to quasi-steady state (s)

\(V_{\text{acc}}\) :

Platelet accumulation rate in region of interest (mm s−1)

\(\beta\) :

Conversion factor to convert thrombin concentration from U mL−1 to μM (nmol U−1)

\(\dot{\gamma }\) :

Local fluid shear rate (s−1)

\(\dot{\gamma }_{\text{w}}\) :

Wall shear rate (s−1)

\({{\varGamma }}\) :

Griffith’s template model for the kinetics of the heparin-catalyzed inactivation of thrombin by antithrombin

\(\theta\) :

Fraction of resting platelets that activate upon surface contact

\(\lambda_{\text{ADP}}\) :

Amount of ADP per activated platelet (nmol PLT−1)

\(\mu\) :

Plasma viscosity (Pa s)

\(\phi_{\text{rt}}\) :

Rate of thrombin generation from prothrombin at the surface of resting platelets

\(\phi_{\text{at}}\) :

Rate of thrombin generation from prothrombin at the surface of activated platelets

\(\rho\) :

Plasma density (kg m−3)

References

  1. Adams, G. A., and I. A. Feuerstein. Maximum fluid concentrations of materials released from platelets at a surface. Am J Physiol Circ Physiol. 244(1):H109–H114, 1983.

    Google Scholar 

  2. Aslan, J., A. Itakura, J. Gertz, and O. T. McCarty. Platelet shape change and spreading. In: Platelets and Megakaryocytes, edited by J. M. Gibbins, and M. P. Mahaut-Smith. New York: Springer, 2012, pp. 91–100. doi:10.1007/978-1-61779-307-3_7.

    Chapter  Google Scholar 

  3. Badimon, L., and J. J. Badimón. Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. Experimental study in the pig model. J Clin Invest. 84(4):1134, 1989.

    Article  Google Scholar 

  4. Bark, D. L., and D. N. Ku. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43(15):2970–2977, 2010.

    Article  Google Scholar 

  5. Bark, D. L., and D. N. Ku. Platelet transport rates and binding kinetics at high shear over a thrombus. Biophys. J . 105(2):502–511, 2013.

    Article  Google Scholar 

  6. Bark, D. L., A. N. Para, and D. N. Ku. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109(10):2642–2650, 2012.

    Article  Google Scholar 

  7. Barstad, R. M., H. E. Roald, Y. Cui, V. T. Turitto, and K. S. Sakariassen. A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses. Arterioscler. Thromb. Vasc. Biol. 14(12):1984–1991, 1994.

    Article  Google Scholar 

  8. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    Article  Google Scholar 

  9. Casa, L. D. C., D. H. Deaton, and D. N. Ku. Role of high shear rate in thrombosis. J. Vasc. Surg. 61(4):1068–1080, 2015.

    Article  Google Scholar 

  10. Casa, L. D. C., and D. N. Ku. High shear thrombus formation under pulsatile and steady flow. Cardiovasc Eng Technol. 5(2):154–163, 2014.

    Article  Google Scholar 

  11. Clemetson, K. J., and J. M. Clemetson. Platelet receptor signalling. Hematol J Off J Eur Haematol Assoc. 5:S159, 2004.

    Google Scholar 

  12. Colace, T. V., and S. L. Diamond. Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arterioscler. Thromb. Vasc. Biol. 33(1):105–113, 2013.

    Article  Google Scholar 

  13. Colace, T. V., R. W. Muthard, and S. L. Diamond. Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow role of thrombin with and without fibrin. Arterioscler. Thromb. Vasc. Biol. 32(6):1466–1476, 2012.

    Article  Google Scholar 

  14. David, T., S. Thomas, and P. G. Walker. Platelet deposition in stagnation point flow: an analytical and computational simulation. Med. Eng. Phys. 23(5):299–312, 2001.

    Article  Google Scholar 

  15. Duraiswamy, N., J. M. Cesar, R. T. Schoephoerster, and J. E. Moore, Jr. Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Biorheology 45(5):547–561, 2008.

    Google Scholar 

  16. Farokhnia, N., P. Irajizad, S. M. Sajadi, and H. Ghasemi. Rational micro/nanostructuring for thin-film evaporation. J. Phys. Chem. C 120(16):8742–8750, 2016.

    Article  Google Scholar 

  17. Fitzgerald, D. J., and G. A. FitzGerald. Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type plasminogen activator. Proc. Natl. Acad. Sci. 86(19):7585–7589, 1989.

    Article  Google Scholar 

  18. Fogelson, A. L. Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J Appl Math. 52(4):1089–1110, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. Fogelson, A. L., and K. B. Neeves. Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47:377–403, 2015.

    Article  Google Scholar 

  20. Folie, B. J., and L. V. Mcintire. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J . 56(6):1121–1141, 1989.

    Article  Google Scholar 

  21. Frojmovic, M. M., R. F. Mooney, and T. Wong. Dynamics of platelet glycoprotein IIb-IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration. Biophys. J . 67(5):2060, 1994.

    Article  Google Scholar 

  22. Frojmovic, M., T. Wong, and T. van de Ven. Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys. J . 59(4):815, 1991.

    Article  Google Scholar 

  23. Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on thrombosis and haemostasis. Thromb. Haemost. 55(3):415–435, 1986.

    Google Scholar 

  24. Goodman, P. D., E. T. Barlow, P. M. Crapo, S. F. Mohammad, and K. A. Solen. Computational model of device-induced thrombosis and thromboembolism. Ann. Biomed. Eng. 33(6):780–797, 2005.

    Article  Google Scholar 

  25. Govindarajan, V., V. Rakesh, J. Reifman, and A. Y. Mitrophanov. Computational study of thrombus formation and clotting factor effects under venous flow conditions. Biophys. J . 110(8):1869–1885, 2016.

    Article  Google Scholar 

  26. Griffith, M. J. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J. Biol. Chem. 257(13):7360–7365, 1982.

    Google Scholar 

  27. Hosseinzadegan, H., D. K. Tafti. Validation of a time dependent physio-chemical model for thrombus formation and growth. In: ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016, pp. V01AT04A007.

  28. Hubbell, J. A., and L. V. McIntire. Platelet active concentration profiles near growing thrombi. A mathematical consideration. Biophys. J . 50(5):937, 1986.

    Article  Google Scholar 

  29. Inauen, W., H. R. Baumgartner, T. Bombeli, A. Haeberli, and P. W. Straub. Dose-and shear rate-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arterioscler. Thromb. Vasc. Biol. 10(4):607–615, 1990.

    Article  Google Scholar 

  30. Irajizad, P., M. Hasnain, N. Farokhnia, S. M. Sajadi, and H. Ghasemi. Magnetic slippery extreme icephobic surfaces. Nat Commun 7:13395, 2016. doi:10.1038/ncomms13395.

    Article  Google Scholar 

  31. Jackson, S. P., W. S. Nesbitt, and S. Kulkarni. Signaling events underlying thrombus formation. J. Thromb. Haemost. 1(7):1602–1612, 2003.

    Article  Google Scholar 

  32. Jones, R. L., N. H. Wilson, C. G. Marr. Thromboxane-like activity of prostanoids with aromatic substituents at C16 and C17. In: Chemistry, Biochemistry, and Pharmacological Activity of Prostanoids: Including the Proceedings of a Symposium on the Chemistry and Biochemistry of Prostanoids Held at The University of Salford, England, 10–14 July 1978. Elsevier, Oxford, 2013, p. 210.

  33. Keller, K. H. Effect of fluid shear on mass transport in flowing blood. In: Federation Proceedings. 1971, pp. 1591–1599.

  34. Lassila, R., J. J. Badimon, S. Vallabhajosula, and L. Badimon. Dynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood. Effects of different stenoses on thrombus growth. Arterioscler. Thromb. Vasc. Biol. 10(2):306–315, 1990.

    Article  Google Scholar 

  35. Lévêque, A. Les Lois de la transmission de chaleur par convection, par André Lévêque. Paris: Dunod, 1928.

    Google Scholar 

  36. Levich, V. G. Physicochemical Hydrodynamics. Englewood Cliffs: Prentice Hall, 1962.

    Google Scholar 

  37. Li, M., D. N. Ku, and C. R. Forest. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12(7):1355–1362, 2012.

    Article  Google Scholar 

  38. Maalej, N., and J. D. Folts. Increased shear stress overcomes the antithrombotic platelet inhibitory effect of aspirin in stenosed dog coronary arteries. Circulation 93(6):1201–1205, 1996.

    Article  Google Scholar 

  39. Mailhac, A., J. J. Badimon, J. T. Fallon, A. Fernandez-Ortiz, B. Meyer, J. H. Chesebro, et al. Effect of an eccentric severe stenosis on fibrin (ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin (ogen) and platelets. Circulation 90(2):988–996, 1994.

    Article  Google Scholar 

  40. Markou, C. P., S. R. Hanson, J. M. Siegel, and D. N. Ku. The role of high wall shear rate on thrombus formation in stenoses. ASME-PUBLICATIONS-BED. 26:555, 1993.

    Google Scholar 

  41. Mehrabadi, M., L. D. C. Casa, C. K. Aidun, and D. N. Ku. A predictive model of high shear thrombus growth. Ann. Biomed. Eng. 44:2339–2350, 2016.

    Article  Google Scholar 

  42. Mehrabadi, M., D. N. Ku, and C. K. Aidun. A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow. Ann. Biomed. Eng. 43(6):1410–1421, 2015.

    Article  Google Scholar 

  43. Mehrabadi, M., D. N. Ku, and C. K. Aidun. Effects of shear rate, confinement, and particle parameters on margination in blood flow. Phys. Rev. E 93(2):23109, 2016.

    Article  Google Scholar 

  44. Merrill, E. W. Rheology of blood. Physiol. Rev. 49(4):863–888, 1969.

    Google Scholar 

  45. Mokhlespour, M. I., M. Ramezanzadeh, R. Narimani. Development of a wearable measuring system for respiratory plethysmography. In: Biomed2011, lASTED, Innsbruck, Austria, 2011.

  46. Mokhlespour Esfahani, M. I., S. Taghinedjad, V. Mottaghitalab, R. Narimani, M. Parnianpour, C. Loughlin, et al. Novel printed body worn sensor for measuring the human movement orientation. Sens. Rev. 36(3):321–331, 2016.

    Article  Google Scholar 

  47. Mukherjee, D., N. D. Jani, K. Selvaganesan, C. L. Weng, and S. C. Shadden. Computational assessment of the relation between embolism source and embolus distribution to the circle of willis for improved understanding of stroke etiology. J. Biomech. Eng. 138(8):81008, 2016.

    Article  Google Scholar 

  48. Rosing, J., J. L. Van Rijn, E. M. Bevers, G. Van Dieijen, P. Comfurius, and R. F. Zwaal. The role of activated human platelets in prothrombin and factor X. Blood 65(2):319–332, 1985.

    Google Scholar 

  49. Saelman, E. U. M., H. K. Nieuwenhuis, K. M. Hese, P. G. de Groot, H. F. G. Heijnen, and H. Sage. Platelet adhesion to collagen types I through VI11 under conditions of stasis and flow is mediated by GPIa/IIa (a2Bl-integrin). Blood 83:1244–1250, 1994.

    Google Scholar 

  50. Selvarasu, N. K. C., and D. K. Tafti. Investigation of the effects of dynamic change in curvature and torsion on pulsatile flow in a helical tube. J. Biomech. Eng. 134(7):71005, 2012.

    Article  Google Scholar 

  51. Selvarasu, N. K. C., and D. K. Tafti. Effects of elastic modulus change in helical tubes under the influence of dynamic changes in curvature and torsion. J. Biomech. Eng. 136(8):81001, 2014.

    Article  Google Scholar 

  52. Selvarasu, N. K. C., D. K. Tafti, and P. P. Vlachos. Hydrodynamic effects of compliance mismatch in stented arteries. J. Biomech. Eng. 133(2):21008, 2011.

    Article  Google Scholar 

  53. Soares, J. S., J. Sheriff, and D. Bluestein. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech. Model. Mechanobiol. 12(6):1127–1141, 2013.

    Article  Google Scholar 

  54. Sorensen, E. N. Computational Simulation of Platelet Transport, Activation, and Deposition. Pittsburgh: University of Pittsburgh, 2002.

    Google Scholar 

  55. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.

    Article  Google Scholar 

  56. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–448, 1999.

    Article  Google Scholar 

  57. Taylor, J. O., R. S. Meyer, S. Deutsch, and K. B. Manning. Development of a computational model for macroscopic predictions of device-induced thrombosis. Biomech. Model. Mechanobiol. 15(6):1713–1731, 2016.

    Article  Google Scholar 

  58. Taylor, J. O., L. Yang, S. Deutsch, and K. B. Manning. Development of a platelet adhesion transport equation for a computational thrombosis model. J. Biomech. 50:114–120, 2017.

    Article  Google Scholar 

  59. Turitto, V. T., and H. R. Baumgartner. Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Microvasc. Res. 17(1):38–54, 1979.

    Article  Google Scholar 

  60. Vahidi, B., and N. Fatouraee. Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation. J. Biomech. 45(7):1312–1322, 2012.

    Article  Google Scholar 

  61. van der Giessen, A. G., J. J. Wentzel, F. N. van de Vosse, A. F. van der Steen, P. J. de Feyter, F. J. Gijsen. Plaque and shear stress distribution in human coronary bifurcations: a multi-slice computed tomography study. In: ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007, pp. 477–478.

  62. van der Giessen, A. G., J. J. Wentzel, F. N. van de Vosse, A. F. van der Steen, P. J. de Feyter, and F. J. Gijsen. Plaque and shear stress distribution in human coronary bifurcations: a multi-slice computed tomography study. Am. Soc. Mech. Eng. 36:477–478, 2007.

    Google Scholar 

  63. Varga-Szabo, D., I. Pleines, and B. Nieswandt. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 28(3):403–412, 2008.

    Article  Google Scholar 

  64. Virchow, R. Gesammelte abhandlungen zur wissenschaftlichen medicin. Frankfurt: Meidinger, 1856.

    Google Scholar 

  65. Vorchheimer, D. A., Becker R. Platelets in atherothrombosis. In: Mayo Clinic Proceedings. Oxford: Elsevier, 2006, pp. 59–68.

  66. Wagner, W. R., and J. A. Hubbell. Local thrombin synthesis and fibrin formation in an in vitro thrombosis model result in platelet recruitment and thrombus stabilization on collagen in heparinized blood. J. Lab. Clin. Med. 116(5):636–650, 1990.

    Google Scholar 

  67. Wang, W., T. G. Diacovo, J. Chen, J. B. Freund, and M. R. King. Simulation of platelet, thrombus and erythrocyte hydrodynamic interactions in a 3D arteriole with in vivo comparison. PLoS ONE 8(10):e76949, 2013.

    Article  Google Scholar 

  68. Weiss, H. J. Platelets: Pathophysiology and Antiplatelet Drug Therapy. New York: AR Liss, 1982.

    Google Scholar 

  69. Weiss, H. J. Flow-related platelet deposition on subendothelium. Thromb. Haemost. 74(1):117–122, 1995.

    Google Scholar 

  70. Wootton, D. M., C. P. Markou, S. R. Hanson, and D. N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29(4):321–329, 2001.

    Article  Google Scholar 

  71. Zhao, H., E. S. G. Shaqfeh, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24(1):11902, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the computational support and resources provided by Advanced Research Computing (ARC) at Virginia Tech. This study was funded by the National Science Foundation (Grant CBET-1235790).

Conflict of interest

Hamid Hosseinzadegan declares that he has no conflict of interest. Danesh K. Tafti declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danesh K. Tafti.

Additional information

Associate Editors Baruch Barry Lieber and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadegan, H., Tafti, D.K. Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number. Cardiovasc Eng Tech 8, 164–181 (2017). https://doi.org/10.1007/s13239-017-0304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0304-3

Keywords

Navigation