Skip to main content
Log in

Semiquantum private comparison via cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we design the first semiquantum private comparison (SQPC) protocol which is realized via cavity quantum electrodynamics (QED) by making use of the evolution law of atom. With the help of a semi-honest third party (TP), the proposed protocol can compare the equality of private inputs from two semiquantum parties who only have limited quantum capabilities. The proposed protocol uses product states as initial quantum resource and employs none of unitary operations, quantum entanglement swapping operation or delay lines. Security proof turns out that it can defeat both the external attack and the internal attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, 1984, 175–179

  2. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  3. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  4. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  5. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Chang, Y., Zhang, S.B., Yan, L.L., Han, G.H.: Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state. Chin. Phys. B 24, 050307 (2015)

    Article  ADS  Google Scholar 

  8. Fan, L.: A novel quantum blind signature scheme with four-particle cluster states. Int. J. Theor. Phys. 55, 1558–1567 (2016)

    Article  ADS  Google Scholar 

  9. Zheng, T., Chang, Y., Zhang, S.B.: Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit GHZ states. Quantum Inf. Process. 19, 163 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)

    Article  ADS  Google Scholar 

  12. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lian, J.Y., Li, X., Ye, T.Y.: Multi-party quantum private comparison of size relationship with two third parties based on d-dimensional Bell states. Phys. Scr. 98, 035011 (2023)

    Article  ADS  Google Scholar 

  14. Yao, A.C.: Protocols for secure computations. In Proc. of the 23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp. 160–164

  15. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ye, T.Y., Geng, M.J., Xu, T.J., Chen, Y.: Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 21(4), 123 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. 2016, https://arxiv.org/abs/1607.07961

  19. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  21. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jiang, L.Z.: Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 19, 180 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sun, Z.: Improvement of measure-resend semi-quantum private comparison scheme using GHZ states. Int. J. Theor. Phys. 61(3), 1–7 (2022)

    Article  MathSciNet  Google Scholar 

  24. Tian, Y., Li, J., Li, C.Y., Chen, X.B.: An efficient semi-quantum private comparison protocol based on entanglement swapping of four-particle cluster state and Bell state. Int. J. Theor. Phys. 61, 67 (2022)

    Article  MathSciNet  Google Scholar 

  25. Tsai, C.W., Lin, J., Yang, C.W.: Cryptanalysis and improvement in semi-quantum private comparison based on Bell states. Quantum Inf. Process. 20, 120 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sun, Y.H., Yan, L.L., Sun, Z.B., Zhang, S.B., Lu, J.Z.: A novel semi-quantum private comparison scheme using Bell entangle states. Comput. Mater. Con 66(3), 2385–2395 (2021)

    Google Scholar 

  27. Tian, Y., Li, J., Ye, C.Q., Chen, X.B., Li, C.Y.: W-state-based semi-quantum private Comparison. Int. J. Theor. Phys. 61, 18 (2022)

    Article  MathSciNet  Google Scholar 

  28. Geng, M.J., Chen, Y., Xu, T.J., Ye, T.Y.: Single-state semiquantum private comparison based on Bell states. EPJ Quantum Tech. 9, 36 (2002)

    Article  Google Scholar 

  29. Geng, M.J., Xu, T.J., Chen, Y., Ye, T.Y.: Semiquantum private comparison of size relationship based on d-level single-particle states. Sci. Sin. Phys. Mech. Astron. 52(9), 290311 (2022)

    Article  Google Scholar 

  30. Li, Y.C., Chen, Z.Y., Xu, Q.D., Gong, L.H.: Two semi-quantum private comparison protocols of size relation based on single particles. Int. J. Theor. Phys. 61, 157 (2022)

    Article  MathSciNet  Google Scholar 

  31. Luo, Q.B., Li, X.Y., Yang, G.W., Lin, C.: A mediated semi-quantum protocol for millionaire problem based on high-dimensional Bell states. Quantum Inf. Process. 21, 257 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wang, B., Liu, S.Q., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states. Chin. Phys. B 31, 010302 (2022)

    Article  ADS  Google Scholar 

  33. Lian, J.Y., Li, X., Ye, T.Y.: Multi-party semiquantum private comparison of size relationship with d-dimensional Bell states. EPJ Quantum Tech. 10, 10 (2023)

    Article  Google Scholar 

  34. Ye, T.Y., Lian, J.Y.: A novel multi-party semiquantum private comparison protocol of size relationship with d-dimensional single-particle states. Physica A 611, 128424 (2023)

    Article  MathSciNet  Google Scholar 

  35. Shu, J.: Quantum state preparation and quantum information processing in cavity QED, pp. 19–20. University of science and technology of China, Heifei (2007)

    Google Scholar 

  36. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  37. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  38. Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68, 035801 (2003)

    Article  ADS  Google Scholar 

  39. Shan, C.J., Liu, J.B., Chen, T., Liu, T.K., Huang, Y.X., Li, H.: Controlled quantum secure direct communication with local separate measurements in cavity QED. Int. J. Theor. Phys. 49, 334–342 (2010)

    Article  Google Scholar 

  40. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23, 3225–3234 (2009)

    Article  ADS  Google Scholar 

  41. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  42. Deng, F.G., Zhou, P., Li, X.H., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. 2005, https://arxiv.org/abs/quant-ph/0508168

  43. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  44. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding by the National Natural Science Foundation of China (Grant No. 62071430) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. JRK21002) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

XX wrote the manuscript; J-YL checked the paper and T-YY reviewed the paper.

Corresponding author

Correspondence to Tian-Yu Ye.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Lian, JY. & Ye, TY. Semiquantum private comparison via cavity QED. Quantum Inf Process 23, 174 (2024). https://doi.org/10.1007/s11128-024-04398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04398-7

Keywords

Navigation