Skip to main content
Log in

Semi-quantum private comparison based on Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose two semi-quantum private comparison (SQPC) protocols based on Bell states. With the help of a semi-honest quantum third party (TP), two classical users can compare the equality of their secrets without leaking them. That TP is semi-honest means she may misbehave on her own, but she is not allowed to conspire with any user. The quantum measurement is not invoked in the first protocol, whereas the classical user in previous SQPC protocols has to be equipped with quantum measurement equipment. In the second protocol, the classical user prepares the opposite states based on her (his) measurements. By this way, all cases can produce the sharing key. The two protocols are more efficient than the previous SQPC protocols. What is more, we show that our protocols are secure against some famous attacks, such as the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the participant attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Google Scholar 

  5. Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Google Scholar 

  8. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Google Scholar 

  9. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6(4), 899–906 (2008)

    MATH  Google Scholar 

  10. Chang, Y., Xu, C.X., Zhang, S.B., et al.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)

    Google Scholar 

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A59, 1829–1834 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Google Scholar 

  13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Google Scholar 

  14. Wang, T.Y., Wen, Q.Y., Chen, X.B., et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun.281(24), 6130–6134 (2008)

    Google Scholar 

  15. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Google Scholar 

  16. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron.21, 6600111 (2015)

    Google Scholar 

  17. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Google Scholar 

  18. Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), p. 160. Washington, D.C. (1982)

  20. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaires’ problem. Discrete Appl. Math. 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    MATH  Google Scholar 

  23. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    MATH  Google Scholar 

  24. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process.12(2), 887–897 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys.67(2), 147–156 (2017)

    Google Scholar 

  27. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52(9), 3212–3219 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process.11(2), 373–384 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Google Scholar 

  33. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Google Scholar 

  34. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    Google Scholar 

  36. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Google Scholar 

  38. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf.10(4), 1250045 (2012)

    MathSciNet  Google Scholar 

  39. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality withχ-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using χ-type state. Int. J. Theor. Phys.51(6), 1953–1960 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys.53(4), 1085–1091 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Ye, C.Q., Ye, T.Y.: Circular Multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Google Scholar 

  47. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)

    MATH  Google Scholar 

  50. Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A79(5), 052312 (2009)

    Google Scholar 

  51. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum key distribution with limited classical Bob. Int. J. Quantum Inf. 11(1), 1350005 (2013)

    MathSciNet  Google Scholar 

  52. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Google Scholar 

  57. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Google Scholar 

  58. Boyer, M., Katz, M., Liss, R., Mor, T.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(3), 062335 (2017)

    Google Scholar 

  59. Tsai, C.W., Yang, C.W., Lee, N.Y.: Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 34(34), 1950281 (2019)

    Google Scholar 

  60. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Google Scholar 

  61. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    MathSciNet  MATH  Google Scholar 

  62. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    MATH  Google Scholar 

  63. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Google Scholar 

  64. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)

    MathSciNet  MATH  Google Scholar 

  65. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Lin, J., Yang, C.W., Tsai, C.W., et al.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    MathSciNet  MATH  Google Scholar 

  67. Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2013)

    MathSciNet  MATH  Google Scholar 

  68. Xie, C., Li, L.Z., Qiu, D.W.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys.54(10), 3819–3824 (2015)

    MathSciNet  MATH  Google Scholar 

  69. Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys.55(9), 4027–4035 (2016)

    MathSciNet  MATH  Google Scholar 

  70. Gao, G., Wang, Y., Wang, D.: Multiparty semi-quantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)

    Google Scholar 

  71. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/1607.07961.pdf

  72. Thapliyala, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf.16(5), 1850047 (2018)

    MathSciNet  MATH  Google Scholar 

  73. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys.57(12), 3819–3834 (2018)

    MathSciNet  MATH  Google Scholar 

  74. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    MathSciNet  Google Scholar 

  75. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    MATH  Google Scholar 

  76. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    MATH  Google Scholar 

  77. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. (2005). http://arxiv.org/pdf/quant-ph/0508168.pdf

  78. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Google Scholar 

Download references

Acknowledgements

Support by the National Natural Science Foundation of China (Grant Nos: 61871347, 11375152) and Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (No. 2013E10012) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhen Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, LZ. Semi-quantum private comparison based on Bell states. Quantum Inf Process 19, 180 (2020). https://doi.org/10.1007/s11128-020-02674-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02674-w

Keywords

Navigation