Skip to main content
Log in

Multiparty quantum private comparison based on quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Initially, we address two issues that exist in multiparty quantum private comparison protocols. One among those arises when XOR operation is used in the multiparty comparison. The other issue occurs due to the poor implementation of multiparty computation, which leads to semi-honest third-party to access private data of the participants. Then, we propose a multiparty quantum private comparison protocol based on quantum walks on a circle. The protocol checks whether all parties (participants) hold the same value or not with the help of a semi-honest third-party (TP). Finally, we prove the correctness and security of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Yao, A.C.: for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164 (1982). IEEE

  2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328 (2019)

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 351–371 (2019)

  4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, pp. 503–513 (1990)

  5. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 136–155 (2005). Springer

  6. Bennett, C., Brassard, G.: Quantum cryptography: Public key cryptography and coin tossing. In: Proceedings of International Conference Computer Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic bell states. Phys. Rev. A 60(1), 157 (1999)

    Article  ADS  Google Scholar 

  9. Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Huang, S.-L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using ghz states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)

    Article  MATH  Google Scholar 

  12. Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z., Cui, W.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, W.-J., Liu, C., Wang, H.-B., Liu, J.-F., Wang, F., Yuan, X.-M.: Secure quantum private comparison of equality based on asymmetric w state. Int. J. Theor. Phys. 53(6), 1804–1813 (2014)

    Article  MATH  Google Scholar 

  16. Zhang, H., Ji, Z., Wang, H., Wu, W.: Survey on quantum information security. China Commun. 16(10), 1–36 (2019). https://doi.org/10.23919/JCC.2019.10.001

    Article  ADS  Google Scholar 

  17. Chang, Y.-J., Tsai, C.-W., Hwang, T.: Multi-user private comparison protocol using ghz class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  19. Chen, F.-L., Zhang, H., Chen, S.-G., Cheng, W.-T.: Novel two-party quantum private comparison via quantum walks on circle. Quant. Inf. Process. 20(5), 1–19 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. Chongqiang, Y., Jian, L., Zheng-wen, C.: A class of protocols for multi-party quantum private comparison based on traveling mode. Quant. Inf. Process. 20(2), 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  21. Ye, T.-Y.: Multi-party quantum private comparison protocol based on entanglement swapping of bell entangled states. Commun. Theor. Phys. 66(3), 280 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ye, T.-Y., Hu, J.-L.: Multi-party quantum private comparison based on entanglement swapping of bell entangled states within d-level quantum system. Int. J. Theor. Phys. 60(4), 1471–1480 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan-Feng, L.: Improvement of multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 59(9), 2773–2780 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78(17), 3410 (1997)

    Article  ADS  Google Scholar 

  25. Brassard, G., Crépeau, C., Mayers, D., Salvail, L.: A brief review on the impossibility of quantum bit commitment. arXiv:quant-ph/9712023 (1997)

  26. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ming-Yi, D.: Multi-party quantum private comparison with qudit shifting operation. Int. J. Theor. Phys. 59(10), 3079–3085 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Du, G., Zhang, F., Ma, C.: A new multi-party quantum private comparison protocol based on circle model. Int. J. Theor. Phys. 58(10), 3225–3233 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cao, H., Ma, W., Lü, L., He, Y., Liu, G.: Multi-party quantum privacy comparison of size based on d-level ghz states. Quant. Inf. Process. 18(9), 1–14 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zhao-Xu, J., Tian-Yu, Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states. Quant. Inf. Process. 16(7), 1–20 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors made contributions to the conception or design of the work.

Corresponding author

Correspondence to Justin Joseph.

Ethics declarations

Conflict of interest

Not applicable.

Consent to participate

Not applicable.

Consent for publication

I, the undersigned, give my consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in the above Journal and Article.

Code availability

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Ali, S.T. Multiparty quantum private comparison based on quantum walks. Quantum Inf Process 22, 17 (2023). https://doi.org/10.1007/s11128-022-03758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03758-5

Keywords

Navigation