Skip to main content
Log in

Three-party quantum privacy comparison protocol based on classical-quantum authentication channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the help of semi-honest third party , a new quantum privacy comparison (QPC) protocol is proposed, which can compare the equality of the secrets of three participants without disclosing the secret value. At present, QPC protocols using different quantum states have been proposed. If complex quantum states are used in QPC protocol, more expensive equipment or more complex methods will be required to generate these quantum states, which may reduce efficiency and increase cost. In order to improve the availability of the protocol, a QPC protocol based on classical-quantum authentication channel is proposed in this paper. The protocol takes Bell state as quantum resource and uses single-particle measurement technology to measure particles, so the protocol enables participants to compare quantum privacy without expensive quantum devices. Finally, in order to ensure the security of the protocol, we use decoy photon technology and quantum key distribution technology to encrypt, so that the protocol can resist external attacks and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript has no association with data.

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  MATH  ADS  Google Scholar 

  2. Henderson, M., Novak, J., Cook, T.: Leveraging quantum annealing for election forecasting. J. Phys. Soc. Jpn. 88(6), 061009 (2019)

    Article  ADS  Google Scholar 

  3. Gao, W., Yang, L.: Quantum Election Protocol Based on Quantum Public Key Cryptosystem, vol. 2021. Security and Communication Networks, USA (2021)

    Google Scholar 

  4. Liao, Q., Liu, H., Zhu, L., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103(3), 032410 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  5. Wu, X., Wang, Y., Huang, D.: Passive continuous-variable quantum secret sharing using a thermal source. Phys. Rev. A 101(2), 022301 (2020)

    Article  ADS  Google Scholar 

  6. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  7. Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  8. An, X.-B., Zhang, H., Zhang, C.-M., Chen, W., Wang, S., Yin, Z.-Q., Wang, Q., He, D.-Y., Hao, P.-L., Liu, S.-F., et al.: Practical quantum digital signature with a gigahertz bb84 quantum key distribution system. Opt. Lett. 44(1), 139–142 (2019)

    Article  ADS  Google Scholar 

  9. Yin, H.-L., Fu, Y., Liu, H., Tang, Q.-J., Wang, J., You, L.-X., Zhang, W.-J., Chen, S.-J., Wang, Z., Zhang, Q., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)

    Article  ADS  Google Scholar 

  10. Yao, A.C.: Protocols for secure computations, in: 23rd annual symposium on foundations of computer science (sfcs 1982), IEEE, 1982, pp. 160–164

  11. Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  MATH  ADS  Google Scholar 

  12. Wu, W., Zhao, Y.: Quantum private comparison of size using d-level bell states with a semi-honest third party. Quantum Inf. Process. 20(4), 1–18 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  13. Zhang, W.-W., Li, D., Li, Y.-B.: Quantum private comparison protocol with w states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  14. Fan, P., Rahman, A.U., Ji, Z., Ji, X., Hao, Z., Zhang, H.: Two-party quantum private comparison based on eight-qubit entangled state. Modern Phys. Lett. A 37(5), 2250026 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  15. Wu, W., Ma, X.: Quantum private comparison protocol without a third party. Int. J. Theor. Phys. 59(6), 1854–1865 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., Chen, X., Li, H., Yang, Y., Li, J.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended bell state. Quantum Inf. Process. 18(5), 1–12 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Xu, Q.-D., Chen, H.-Y., Gong, L.-H., Zhou, N.-R.: Quantum private comparison protocol based on four-particle ghz states. Int. J. Theor. Phys. 59(6), 1798–1806 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang, Y., Zhang, W.-B., Zhang, S.-B., Wang, H.-C., Yan, L.-L., Han, G.-H., Sheng, Z.-W., Huang, Y.-Y., Suo, W., Xiong, J.-X.: Quantum private comparison of equality based on five-particle cluster state. Commun. Theor. Phys. 66(6), 621 (2016)

    Article  ADS  Google Scholar 

  19. Ji, Z.-X., Ye, T.-Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Wu, W., Cai, Q., Wu, S., Zhang, H.: Cryptanalysis of he’s quantum private comparison protocol and a new protocol. Int. J. Quantum Inform. 17(03), 1950026 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Ming-Yi, D.: Multi-party quantum private comparison with qudit shifting operation. Int. J. Theor. Phys. 59(10), 3079–3085 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997)

    Article  ADS  Google Scholar 

  23. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729 (2000)

    Article  ADS  Google Scholar 

  24. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(1), 43 (2002)

    Article  ADS  Google Scholar 

  25. Gobby, C., Yuan, a., Shields, A.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. (2004) 84(19): 3762–3764

  26. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the brádler-dušek protocol. Quantum Inform. Comput. 7(4), 329–334 (2007)

    Article  MATH  Google Scholar 

  27. Ji, Z.-X., Fan, P.-R., Zhang, H.-G., Wang, H.-Z.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Optics Commun. 459, 124911 (2020)

    Article  Google Scholar 

  28. Chong-Qiang, Y., Tian-Yu, Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, X., Zhang, S.-B., Chang, Y., Hou, M., Cheng, W.: Efficient quantum private comparison based on entanglement swapping of bell states. Int. J. Theor. Phys. 60(10), 3783–3796 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, T.-Y.: Multi-party quantum private comparison protocol based on entanglement swapping of bell entangled states. Commun. Theor. Phys. 66(3), 280 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Lang, Y.-F.: Quantum private comparison using single bell state. Int. J. Theor. Phys. 60(11), 4030–4036 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, T., Ji, Z.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys. Mech. Astron. 60(9), 1–10 (2017)

    Article  Google Scholar 

  33. Ye, T.-Y., Ji, Z.-X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Science and technology research project of Hebei higher education Nos. ZD2021011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanQing Wu.

Ethics declarations

Conflict of interest

All authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Guo, L. Three-party quantum privacy comparison protocol based on classical-quantum authentication channel. Quantum Inf Process 21, 382 (2022). https://doi.org/10.1007/s11128-022-03733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03733-0

Keywords

Navigation