Skip to main content
Log in

Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We design a quantum circuit to generate a class of partially entangled quantum states. Using this kind of quantum state as quantum channel, we put forward deterministic schemes for controlled joint remote state preparation of arbitrary two- and three-qubit states and extend them to prepare arbitrary multi-qubit states. For each case, we give the concrete construction methods of multi-qubit measurement basis and unitary transformations to recover the initial original state. Unlike most previous works, where the parameters of the quantum channel are given to the receiver who can accomplish the task only probabilistically by consuming auxiliary resource, operation and measurement, here we give them to the supervisor. Thanks to the knowledge of quantum channel parameters, the supervisor can perform appropriate complete projection measurement. Combined with the feed-forward strategy adapted by the preparers, the measurement not only much simplifies the receiver’s operation but also yields unit success probability. Amazingly, our protocols do not depend on the entanglement degree of the shared quantum channel, and they are within the reach realization of current quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett 79, 325 (1997)

    Article  ADS  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Lo, H.K.: Classical communication cost in distributed quantum information processing: a generalization of quantum communication complexity. Phys. Rev. A 62, 12313 (2000)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Divincenzo, D.P., Shor, P.W., et al.: Remote state preparation. Phys. Rev. Lett 87, 077902 (2001)

    Article  ADS  Google Scholar 

  6. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  7. Prevedel, R., Walther, P., Tiefenbacher, P., et al.: High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)

    Article  ADS  Google Scholar 

  8. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31, 010301 (2014)

    Article  ADS  Google Scholar 

  10. Peng, J.Y., Luo, M.X., Mo, Z.W., et al.: Flexible deterministic joint remote state preparation of some states. Int. J. Quantum. Inf. 11, 1350044 (2013)

    Article  MathSciNet  Google Scholar 

  11. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of \(n\)-qubit nobmaximally entangled states of generalized Bell-type. Int. J. Quantum. Inf. 9(1), 389–403 (2011)

    Article  Google Scholar 

  12. Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271–3281 (2019)

    Article  MathSciNet  Google Scholar 

  13. Zhou, K.H., Shi, L., Luo, B.B., et al.: Deterministic controlled remote state preparation of real-parameter multi-qubit state via maximal slice state. Int. J. Theor. Phys. 58, 4079–4092 (2019)

    Article  Google Scholar 

  14. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077–1089 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chen, N., Quan, D.X., Yang, H., et al.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, W.L., Ma, S.Y., Qu, Z.G.: Controlled remote preparation of an arbitrary four-qubit cluster-type state. Chin. Phys. B 25(10), 100304 (2016)

    Article  ADS  Google Scholar 

  17. Ma, S.Y., Chen, W.L., Qu, Z.G., Tang, P.: Controlled remote preparation of an arbitrary four-qubit \(\chi \) state via partially entangled channel. Int. J. Theor. Phys. 56, 1653–1664 (2017)

    Article  Google Scholar 

  18. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chang, L.W., Zhang, Y.Q., Tian, X.X., et al.: Fault tolerant controlled quantum dialogue against collective noise. Chin. Phys. B 29(1), 010304 (2020)

    Article  ADS  Google Scholar 

  20. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations. Int. J. Theor. Phys. 58, 3065–3072 (2019)

    Article  MathSciNet  Google Scholar 

  21. Fan, Q.B., Liu, D.D.: Controlled remote implementation of partially unknown quantum operation. Sci. China. Phys. Mech. 51(11), 1661–1667 (2008)

    Article  Google Scholar 

  22. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378(48), 3582–3585 (2014)

    Article  ADS  Google Scholar 

  23. An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum. Inf. 6(05), 1051–1066 (2008)

    Article  Google Scholar 

  24. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223–3237 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51(11), 3575–3586 (2012)

    Article  MathSciNet  Google Scholar 

  26. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Deterministic multi-hop controlled teleportation of arbitrary single-qubit state. Int. J. Theor. Phys. 56, 3348–3358 (2017)

    Article  MathSciNet  Google Scholar 

  27. Horodecki, M., De Sen, A., Sen, U., Horodecki, K.: Local indistinguishability: more nonlocality with less entanglement. Phys. Rev. Lett. 90(4), 047902 (2003)

    Article  ADS  Google Scholar 

  28. Zhang, J., Zhang, T., Xuereb, A., et al: More nonlocality with less entanglement in a tripartite atom-optomechanical system. arXiv:1402.3872v4

  29. Agrawal, P., Adhikari, S., Nandi, S.: More communication with less entanglement. arXiv:1409.1810v1

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridhe University Press, Cambridge (2011)

    MATH  Google Scholar 

  31. Shehab, O.: All optical XOR, CNOT gates with initial insight for quantum computation using linear optics. Proc. SPIE Int. Soc. Opt. Eng. 8400, 13 (2012)

    ADS  Google Scholar 

  32. Nemoto, K., Munro, W.J.: A near deterministic linear optical CNOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  33. Ai, L.Y., Yang, J., Zhang, Z.M.: Generation of C-NOT gate, swap gate and phase gate based on two-dimensional ion trap. Acta Phys. Sin. 57, 5589 (2008)

    Google Scholar 

  34. Riebe, M., Kim, K., Schindler, P., et al.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)

    Article  ADS  Google Scholar 

  35. Bonato, C., Haupt, F., Oemrawsingh, S., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  36. Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Arbitrary remote state preparation of photon polarization. In: Quantum Electronics & Laser Science Conference. IEEE (2005)

  37. Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678 (2006)

    Article  Google Scholar 

  38. Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 141 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum. Inf. 9, 809 (2011)

    Article  MathSciNet  Google Scholar 

  40. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported partially by Natural Science Foundation of China (Grant Nos. 11071178, 11671284), Sichuan Provincial Natural Science Foundation of China (Grant. 2017JY0197) and Sichuan Province Education Department Scientific Research Innovation Team Foundation (No. 15TD0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiang Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JY., Bai, Mq., Tang, L. et al. Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel. Quantum Inf Process 20, 340 (2021). https://doi.org/10.1007/s11128-021-03282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03282-y

Keywords

Navigation