Skip to main content
Log in

Controlled remote state preparation via partially entangled quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose two controlled remote state preparation protocols via partially entangled channels. One prepares a single-qubit state, and the other prepares a two-qubit state. Different from other controlled remote state preparation schemes which also utilize partially entangled channels, neither auxiliary qubits nor two-qubit unitary transformations are required in our schemes, and the success probabilities are independent of the coefficients of the quantum channel. The success probabilities are 50 and 25 % for arbitrary single-qubit states and two-qubit states, respectively. We also show that the success probabilities can reach 100 % for restricted classes of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  4. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  6. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    Article  ADS  Google Scholar 

  7. Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    Article  ADS  Google Scholar 

  8. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)

    Article  ADS  Google Scholar 

  9. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  10. Paris, M.G.A., Cola, M.M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B 5, S360 (2003)

    Article  ADS  Google Scholar 

  11. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  12. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)

    Article  ADS  Google Scholar 

  13. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.H., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(14), 150502 (2005)

    Article  ADS  Google Scholar 

  14. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)

    Article  ADS  Google Scholar 

  15. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  16. Barreiro, J.T., Wei, T.C.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  17. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  18. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  19. Zhan, Y.B., Zhang, Q.Y., Shi, J.: Probabilistic joint remote preparation of a high-dimensional equatorial quantum state. Chin. Phys. B 19, 080310 (2010)

    Article  ADS  Google Scholar 

  20. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)

    Article  ADS  Google Scholar 

  21. Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)

    Article  ADS  Google Scholar 

  22. An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6, 1051–1066 (2008)

    Article  MATH  Google Scholar 

  23. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)

    Article  ADS  Google Scholar 

  24. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483–4487 (2010)

    Article  ADS  MATH  Google Scholar 

  25. Xiao, X.Q., Liu, J.M.: Remote preparation of a two-particle entangled state. Int. J. Theor. Phys. 46, 2378–2383 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52(2), 235–240 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52(2), 848–852 (2009)

    ADS  MATH  Google Scholar 

  28. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Remote preparation of an arbitrary two-qubit state with three-party. Int. J. Theor. Phys. 49, 1262–1273 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, Z.Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 55(2), 244–250 (2011)

    Article  ADS  MATH  Google Scholar 

  30. Wang, Z.Y., Song, J.F.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410–2425 (2011)

    Article  MATH  Google Scholar 

  31. Chen, X.B., Ma, S.Y., Yuan, S.Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639–1650 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qubit state via positive operator-valued measurement. Int. J. Quantum Inf. 10, 1250062 (2012)

    Article  MathSciNet  Google Scholar 

  34. Liao, Y.M., Zhou, P., Qin, X.C., He, Y.H., Qin, J.S.: Controlled remote preparing of an arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61, 315–321 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B 42, 125501 (2009)

    Article  ADS  Google Scholar 

  36. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575–3586 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, D., Ye, L.: Multi party-controlled joint remote preparation. Quantum Inf. Process. 12, 3223–3237 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  39. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  40. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature (Lond.) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  41. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  42. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  43. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  44. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  45. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  46. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  47. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307–1320 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Eur. Phys. Lett. 84, 50001 (2008)

    Article  ADS  Google Scholar 

  49. Carteret, H.A., Sudbery, A.: Local symmetry properties of pure three-qubit states. J. Phys. A 33, 4981–5002 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

  51. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11004258 and the Fundamental Research Funds for the Central Universities under Grant No. CQDXWL-2012-014. It is also supported by the Natural Science Foundation Project of CQ CSTC 2011jjA90017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Han Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zeng, Z. & Li, XH. Controlled remote state preparation via partially entangled quantum channel. Quantum Inf Process 14, 1077–1089 (2015). https://doi.org/10.1007/s11128-015-0917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0917-0

Keywords

Navigation