Skip to main content
Log in

Cyclic Controlled Remote Implementation of Partially Unknown Quantum Operations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Fusing the ideas of remote implementation of quantum operation and bidirectional controlled teleportation, we propose a protocol of cyclic controlled remote implementation for three partially unknown quantum operation using seven-qubit cluster state as the quantum channel. Suppose there are three observers Alice, Bob and Charlie, each of them has been given a partially unknown quantum operation. We show that how to realize the cyclic controlled remote implementation of quantum operations where under control of the controller David, Alice can remotely apply her operation on Bob’s qubit, and Bob can remotely apply his operation on Charlie’s qubit, at the same time Charlie can also remotely apply his operation on Alice’s qubit. It is shown that only the senders Alice, Bob, Charlie and the controller David collaborate with each other, the cyclic controlled remote implementation of partially unknown quantum operations can be realized successfully without bidirectional teleportation. So our protocol is safer, resource-efficient and potentially applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huelga, S.T., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  2. He, Y.H., Lu, Q.C., Liao, Y.M., et al.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54(5), 1726–1736 (2015)

    Article  MATH  Google Scholar 

  3. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74(3), 396–401 (2006)

    MathSciNet  Google Scholar 

  4. Zhan, Y.B., Ma, P.C., Zhang, Q.Y.: Remote implementation of an unknown single-qubit operation by different dimensional quantum channel. International Journal of Quantum Information 10(07), 1250074 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Xiang, G.Y., Li, J., Guo, G.C.: Teleporting a rotation on remote photons. Phys. Rev. A 71(4), 044304 (2005)

    Article  ADS  Google Scholar 

  6. Huang, Y.F., Ren, X.F., Zhang, Y.S., et al.: Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Lett. 93(24), 240501 (2004)

    Article  ADS  Google Scholar 

  7. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  8. Wand, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chinese Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  10. Ji, Q.B., Liu, Y.M., Liu, X.S., Yin, X.F., Zhang, Z.J.: Single-qubit operation sharing with Bell and W product states. Commun. Theor. Phys. 60, 165 (2013)

  11. Liu, D.C., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Generalized three-partyqubit operation sharing. Int. J. Quant. Inf. 11, 1350011 (2013)

    Article  MATH  Google Scholar 

  12. Xing, H., Liu, Y.M., Xie, C.M., Ji, Q.B., Zhang, Z.J.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553–1562 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Liu, D.C., Liu, Y.M., Liu, X.S., Xie, C.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Shared quantum control via sharing operation on remote single qutrit. Quantum Inf. Process 12(11), 3527–3542 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: Teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)

    Article  ADS  Google Scholar 

  15. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fan, Q.B., Liu, D.D.: Controlled remote implementation of partially unknown quantum operation. Sci. China Ser. G Phys. Mech. Astron. 51(11), 1661–1667 (2008)

    Article  ADS  Google Scholar 

  17. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states. Phys. Rev. A 75, 062323 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhao, N.B., Wang, A.M.: Hybrid protocol of remote implementation of quantum operations. Phys. Rev. A 76, 062317 (2007)

    Article  ADS  Google Scholar 

  19. Bennett, C.H., Brassard, G., Cŕepeau, C, Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Luo, M.-X., Li, H.-R., Lai, H., Wang, X.: Teleportations of ququart systems using hyper-entangled photons assisted atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016)

    Article  ADS  Google Scholar 

  21. Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72(1), 573–573 (2005)

    Article  Google Scholar 

  22. Peng, J.Y., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non-maximally four-qubit cluster state. International Journal of Quantum Information 11, 1350004 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with χ-state. Quantum Inf. Process 12, 773–784 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Luo, M.X., Ma, S.Y., Chen, X.B., Wang, X.: Hybrid quantum states joining and splitting assisted by quantum dots in one-side optical microcavities. Phys. Rev. A 91, 042326 (2015)

    Article  ADS  Google Scholar 

  25. Peng, J.Y., Luo, M.X., Mo, Z.W., et al.: Flexible deterministic joint remote state preparation of some states. International Journal of Quantum Information 11, 1350044 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 83, 4796–4801 (2010)

    Article  ADS  Google Scholar 

  27. Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156–161 (1999)

    Article  ADS  Google Scholar 

  28. Peng, J.Y., Lei, H.X., Mo, Z.W.: Faithful remote information concentration based on the optimal universal 12 telecloning of arbitrary two-qubit states. Int. J. Theor. Phys. 53(5), 1537–1647 (2014)

    Article  MATH  Google Scholar 

  29. Kimble, H.J.: Quantum internet. Nature (London) 453, 1023 (2008)

    Article  ADS  Google Scholar 

  30. Luo, M.X.: Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett. 120(14), 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Luo, M.X.: Nonlocality of all the quantum networks. Phys. Rev. A 98(4), 042317 (2018)

    Article  ADS  Google Scholar 

  32. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  33. Zou, X.B., Mathis, W.: Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71(3), 032308 (2005)

    Article  ADS  Google Scholar 

  34. Zhang, S.B.: Generation of cluster states in ion-trap systems. Phys. Rev. A 73 (6), 065802 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zou, X.B., Mathis, W.: Schemes for generating the cluster states in microwave cavity QED. Appl. Surf. Sci. 117(6), 380–387 (2005)

    Google Scholar 

  36. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    Article  MATH  Google Scholar 

  37. Wang, X.W., Shan, Y.G., Xia, L.X., et al.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364(1), 7–11 (2007)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (Grant No. 11071178, 11671284), Sichuan Province Education Department Scientific Research Innovation Team Foundation (No. 15TD0027), the science and technology research project of Chongqing Education Commission (Grant No. KJQN201801529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yin Peng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JY., He, Y. Cyclic Controlled Remote Implementation of Partially Unknown Quantum Operations. Int J Theor Phys 58, 3065–3072 (2019). https://doi.org/10.1007/s10773-019-04185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04185-6

Keywords

Navigation