Skip to main content
Log in

Multiparty-controlled joint remote state preparation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we present a novel and efficient information-processing way, multiparty-controlled joint remote state preparation (MCJRSP), to transmit quantum information from many senders to one distant receiver via the control of many agents in a network. We firstly put forward a scheme regarding MCJRSP for an arbitrary single-particle state via Greenberg–Horne–Zeilinger entangled states, and then extend to generalize an arbitrary two-particle state scenario. Notably, different from conventional joint remote state preparation, the desired states cannot be recovered but all of agents collaborate together. Besides, both successful probability and classical information cost are worked out, the relations between success probability and the employed entanglement are revealed, the case of many-particle states is generalized briefly, and the experimental feasibility of our schemes is analysed via an all-optical framework at last. And we argue that our proposal might be of importance to long-distance communication in prospective quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  2. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 015302 (2000)

    Article  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  4. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)

    Article  ADS  Google Scholar 

  5. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)

    Article  ADS  Google Scholar 

  6. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    Article  ADS  Google Scholar 

  7. Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73(6), 062301 (2006)

    Article  ADS  Google Scholar 

  8. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  9. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  10. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87(3), 30006 (2009)

    Article  ADS  Google Scholar 

  11. Liu, J.M., Wang, Y.Z.: Remote preparation of a two-particle entangled state. Phys. Lett. A 316, 159–167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)

    Article  ADS  Google Scholar 

  13. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)

    Article  ADS  Google Scholar 

  14. Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quant. Inf. 6(3), 485–491 (2008)

    Article  MATH  Google Scholar 

  15. Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281(4), 871–875 (2008)

    Article  ADS  Google Scholar 

  16. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50(9), 2748–2757 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  18. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)

    Article  ADS  Google Scholar 

  19. Peters, N.A., et al.: Remote State Preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(14), 150502 (2005)

    Article  ADS  Google Scholar 

  20. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)

    Article  ADS  Google Scholar 

  21. Wu, W., Liu, W.T., Ou, B.Q., Chen, P.X., Li, C.Z.: Remote state preparation with classically correlated state. Opt. Commun. 281(6), 1751–1754 (2008)

    Article  ADS  Google Scholar 

  22. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)

    Article  ADS  Google Scholar 

  23. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  24. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  25. Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012)

    Article  MATH  Google Scholar 

  26. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)

    Article  ADS  Google Scholar 

  27. Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11(3), 751–767 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42(12), 125501 (2009)

    Article  ADS  Google Scholar 

  29. Zha, X.W., Song, H.Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284(5), 1472–1474 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  30. Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44(25), 255304 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  31. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51(11), 3575–3586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. doi:10.1007/s11128-013-0530-z (2013)

  33. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44(7), 075501 (2011)

    Article  ADS  Google Scholar 

  34. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)

    Article  ADS  MATH  Google Scholar 

  35. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010)

    Article  ADS  MATH  Google Scholar 

  36. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)

    Article  ADS  Google Scholar 

  37. Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)

    Article  ADS  Google Scholar 

  38. Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45(33), 335306 (2012)

    Article  Google Scholar 

  40. Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44(9), 095501 (2011)

    Article  ADS  Google Scholar 

  41. An, N.B., Bich, C.T., Don, N.V.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44(13), 135506 (2011)

    Google Scholar 

  42. Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-Qubit chi-state. Int. J. Theor. Phys. 51(10), 3027–3036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A: Math. Theor. 45(21), 215305 (2012)

    Article  ADS  Google Scholar 

  46. Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)

    Article  MATH  Google Scholar 

  47. Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)

    Article  ADS  Google Scholar 

  48. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  49. Han, C., Xue, P., Guo, G.C.: Multipartite entanglement preparation and quantum communication with atomic ensembles. Phys. Rev. A 72(3), 034301 (2005)

    Article  ADS  Google Scholar 

  50. Galiautdinov, A.: Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits. Phys. Rev. A 75(5), 052303 (2007)

    Article  ADS  Google Scholar 

  51. Ostatnický, T., Shelykh, I.A., Kavokin, A.V.: Theory of polarization-controlled polariton logic gates. Phys. Rev. B 81(12), 125319 (2010)

    Article  ADS  Google Scholar 

  52. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  53. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11–20 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  54. Johansen, L.M.: Quantum theory of successive projective measurements. Phys. Rev. A 76(1), 012119 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  55. Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)

    Article  ADS  Google Scholar 

  56. Loock, P.V., Lütkenhaus, N.: Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A 69(1), 012302 (2004)

    Article  ADS  Google Scholar 

  57. Takeoka, M., Sasaki, M., Loock, P.V., Lütkenhaus, N.: Implementation of projective measurements with linear optics and continuous photon counting. Phys. Rev. A 71(2), 022318 (2005)

    Article  ADS  Google Scholar 

  58. Takeoka, M., Sasaki, M., Lütkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 040502 (2006)

    Article  ADS  Google Scholar 

  59. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58–61 (1994)

    Article  ADS  Google Scholar 

  60. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  61. Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3), 032316 (2003)

    Article  ADS  Google Scholar 

  62. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature (London) 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  63. Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the program for the National Natural Science Foundation of China (11247256, 11074002, 61275119 and 11205115), the Specialized Research Fund for Doctoral Program of Higher Education (201034011103), the fund of the Education Department of Anhui Province for Outstanding Youth (2012SQRL023), the fund of Advanced Energy Material Chemistry of Ministry Education of China (KLAEMC-OP201201), and the Doctor Scientific Research Fund of Anhui University (33190058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Ye, L. Multiparty-controlled joint remote state preparation. Quantum Inf Process 12, 3223–3237 (2013). https://doi.org/10.1007/s11128-013-0595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0595-8

Keywords

Navigation