Skip to main content
Log in

Effect of partial-collapse measurement on relativistic quantum Bayesian game under decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a method to improve the payoffs of players in relativistic quantum Bayesian game using partial-collapse measurement. We consider two cases. (Only Unruh effect exists, or both Unruh effect and quantum noise are taken into account.) The results show that the payoffs of players can be enhanced greatly in both cases. The payoffs of two players could be above the classical payoffs by choosing the appropriate partial-collapse measurement strengths. It is noted that for the case only Unruh effect exists, the Unruh effect could be eliminated by using partial-collapse measurement and thus the payoffs of two players are almost completely protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Myerson, R.B.: Game Theory: Analysis of Conflict. Havard University Press, Boston (1991)

    MATH  Google Scholar 

  2. Iqbal, A., Abbott, D.: Constructing quantum games from a system of Bells inequalities. Phys. Lett. A 374, 3155 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Khan, S., Khan, M.K.: Relativistic quantum games in noninertial frames. J. Phys. A - Math. Theor. 44, 355302 (2011)

    Article  ADS  MATH  Google Scholar 

  4. Khan, S., Khan, M.K.: Noisy relativistic quantum games in noninertial frames. Quant. Inf. Process. 12, 1351 (2013)

    Article  ADS  MATH  Google Scholar 

  5. Situ, H.Z.: A quantum approach to play asymmetric coordination games. Quant. Inf. Process. 13, 591 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fra̧ckiewicz, P.: A new quantum scheme for normal-form games. Quant. Inf. Process. 14, 1809 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Huang, Z.M., Qiu, D.W.: Quantum games under decoherence. Int. J. Theor. Phys. 55, 965 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khan, S., Khan, M.K.: Quantum Stackelberg duopoly in a noninertial frame. Chin. Phys. Lett. 28, 070202 (2011)

    Article  MATH  Google Scholar 

  9. Fra̧ckiewicz, P.: Quantum signaling game. J. Phys. A - Math. Theor. 47, 305301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fra̧ckiewicz, P., Sładkowski, J.: Quantum information approach to the ultimatum game. Int. J. Theor. Phys. 53, 3248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gawron, P., Kurzyk, D., Pawela, L.: Decoherence effects in the quantum qubit flip game using Markovian approximation. Quant. Inf. Process. 13, 665 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fra̧ckiewicz, P.: On signaling games with quantum chance move. J. Phys. A - Math. Theor. 48, 075303 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Anand, N., Benjamin, C.: Do quantum strategies always win? Quant. Inf. Process. 14, 4027 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Iqbal, A., Abbott, D.: Quantum matching pennies game. J. Phys. Soc. Jpn. 78, 014803 (2009)

    Article  ADS  Google Scholar 

  15. Iqbal, A., Chappell, J.M., Li, Q., Pearce, C.E.M., Abbott, D.: A probabilistic approach to quantum Bayesian games of incomplete information. Quant. Inf. Process. 13, 2783 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Iqbal, A., Chappell, J.M., Abbott, D.: Social optimality in quantum Bayesian games. Physica A. 436, 798 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Pappa, A., Kumar, N., Lawson, T., Santha, M., Zhang, S.Y., Diamanti, E., Kerenidis, I.: Nonlocality and conflicting interest games. Phys. Rev. Lett. 114, 020401 (2015)

    Article  ADS  Google Scholar 

  18. Situ, H.Z.: Quantum Bayesian game with symmetric and asymmetric information. Quant. Inf. Process. 14, 1827 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Khan, S., Ramzan, M., Khan, M.K.: Decoherence effects on multiplayer cooperative quantum games. Commun. Theor. Phys. 56, 228 (2011)

    Article  MATH  Google Scholar 

  20. Fra̧ckiewicz, P., Schmidt, A.G.M.: N-person quantum Russian roulette. Phys. A 401, 8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iqbal, A., Abbott, D.: Non-factorizable joint probabilities and evolutionarily stable strategies in the quantum prisoners dilemma game. Phys. Lett. A 373, 2537 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton. Proc. R. Soc. A - Math. Phys. 468, 3370 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quant. Inf. Process. 12, 1835 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Alonso-Sanz, R.: A quantum prisoners dilemma cellular automaton. Proc. R. Soc. A - Math. Phys. 470, 20130793 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Alonso-Sanz, R.: Variable entangling in a quantum prisoners dilemma cellular automaton. Quant. Inf. Process. 14, 147 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Situ, H.: Two-player conflicting interest Bayesian games and Bell nonlocality. Quant. Inf. Process. 15, 137 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Bolonek-Lasoń, K.: Three-player conflicting interest games and nonlocality. Quant. Inf. Process. 16, 186 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Alsing, P.M., Fuentes, I.: Focus issue on relativistic quantum information. Class. Quant. Grav. 29, 224001 (2012)

    Article  ADS  Google Scholar 

  29. Situ, H.Z., Huang, Z.M.: Relativistic quantum Bayesian game under decoherence. Int. J. Theor. Phys. 55, 2354 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goudarzi, H., Beyrami, S.: Effect of uniform acceleration on multiplayer quantum game. J. Phys. A: Math. Theor. 45, 225301225301 (2012)

    Article  MATH  Google Scholar 

  31. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318022318 (2014)

    ADS  Google Scholar 

  32. Katz, N., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)

    Article  ADS  Google Scholar 

  33. Blok, M.S., Bonato, C., Markham, M.L., Twitchen, D.J., Dobrovitski, V.V., Hanson, R.: Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nat. Phys. 10, 189 (2014)

    Article  Google Scholar 

  34. Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  35. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  36. Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quant. Inf. Process 14, 4395 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Xiao, X., Xie, Y.M., Yao, Y., Li, Y.L., Wang, J.C.: Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. Ann. Phys. 390, 83 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  39. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  40. Xiao, X., Yao, X., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  41. Liao, X.P., Pan, C.N., Rong, M.S., Fang, M.F.: Effect of partial-collapse measurement on quantum Stackelberg duopoly game in noninertial frame. Quant. Inf. Process. 18, 91 (2019)

    Article  ADS  MATH  Google Scholar 

  42. Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 020304 (2014)

    Article  ADS  Google Scholar 

  43. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U2031135), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16A057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ping Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XP., Yuan, Y. & Rong, MS. Effect of partial-collapse measurement on relativistic quantum Bayesian game under decoherence. Quantum Inf Process 20, 281 (2021). https://doi.org/10.1007/s11128-021-03229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03229-3

Keywords

Navigation