Skip to main content
Log in

Noisy relativistic quantum games in noninertial frames

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The influence of noise and of Unruh effect on quantum Prisoners’ dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Eisert J., Wilkens J., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Marinatto L., Weber T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. Li H., Du J., Massar S.: Continuous-variable quantum games. Phys. Lett. A 306, 73–78 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Lo C.F., Kiang D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94–98 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Flitney A.P., Abbott D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)

    Article  ADS  Google Scholar 

  7. Iqbal A., Toor A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  8. Flitney A.P., Ng J., Abbott D.: Quantum Parrondo’s games. Physica A 314, 35–42 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Goldenberg L., Vaidman L., Wiesner S.: Quantum gambling. Phys. Rev. Lett. 82, 3356–3359 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Khan S., Ramzan M., Khan M.K.: Quantum model of Bertrand duopoly. Chin. Phys. Lett. 27, 080302 (2010)

    Article  ADS  Google Scholar 

  11. Chen L.K., Ang H., Kiang D., Kwek L.C., Lo C.F.: Quantum prisoner dilemma under decoherence. Phys. Lett. A 316, 317–323 (2003)

    Article  ADS  MATH  Google Scholar 

  12. Flitney A.P., Abbott D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38, 449–459 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Khan S., Ramzan M., Khan M.K.: Quantum Parrondo’s games under decoherence. Int. J. Theo. Phys. 49, 31–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alsing P.M., Fuentes-Schuller I., Mann R.B., Tessier T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  15. Ling Y., He S., Qiu W., Zhang H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys. A Math. Theor. 40, 9025–9032 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gingrich R.M., Adami C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  17. Pan Q., Jing J.: Degradation of nonmaximal entanglement of scalar and dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Fuentes-Schuller I., Mann R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. Terashima H., Ueda M.: Relativistic Einstein-Podolsky-Rosen correlation and Bell’s inequality. Int. J. Quantum Inf. 1, 93–114 (2003)

    Article  MATH  Google Scholar 

  20. Khan S., Khan M.K.: Open quantum systems in noninertial frames. J. Phys. A Math. Theor. 44, 045305 (2011)

    Article  ADS  Google Scholar 

  21. Wang J., Jing J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. Khan S.: Entanglement of tripartite states with decoherence in non-inertial frames. J. Mod. Opt. 59, 250–258 (2012)

    Article  ADS  Google Scholar 

  23. Khan S., Khan M.K.: Relativistic quantum games in noninertial frames. J. Phys. A Math. Theor. 44, 355302 (2011)

    Article  Google Scholar 

  24. Takagi S.: Vacuum noise and stress induced by uniform acceleration. Prog. Theor. Phys. Suppl. 88, 1–142 (1986)

    Article  ADS  Google Scholar 

  25. Alsing P.M., McMahon D., Milburn G.J.: Teleportation in a non-inertial frame. J. Opt. B Quantum Semiclass. Opt. 6, S834–S843 (2004)

    Article  ADS  Google Scholar 

  26. Aspachs M., Adesso G., Fuentes I.: Optimal quantum estimation of the Unruh-Hawking effect. Phys. Rev. Lett. 105, 151301 (2010)

    Article  ADS  Google Scholar 

  27. Martin-Martinez E., Garay L.J., Leon J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2010)

    Article  ADS  Google Scholar 

  28. Bruschi D.E., Louko J., Martin-Martinez E., Dragan A., Fuentes I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  29. Davies P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)

    Article  ADS  Google Scholar 

  30. Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  31. Benjamin S.C., Hayden P.M.: Quantum games and quantum strategies. Phys. Rev. Lett. 87, 06980 (2001)

    Article  Google Scholar 

  32. Flitney A.P., Hollenberg L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S., Khan, M.K. Noisy relativistic quantum games in noninertial frames. Quantum Inf Process 12, 1351–1363 (2013). https://doi.org/10.1007/s11128-012-0469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0469-5

Keywords

Navigation