Skip to main content
Log in

Quantum Bayesian game with symmetric and asymmetric information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We use one of the influential quantum game models, the Marinatto–Weber model, to investigate quantum Bayesian game. We show that in a quantum Bayesian game which has more than one Nash equilibrium, one equilibrium stands out as the compelling solution, whereas two Nash equilibria seem equally compelling in the classical Bayesian game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There exist two mixed strategy Nash equilibria in this game, but their payoffs are smaller than \((B',B',B',B')\)’s and \((S',S',S',S')\)’s (see “Appendix” for the payoffs), thus rational players would not prefer mixed strategy Nash equilibria.

  2. Any mixed strategy Nash equilibrium’s payoff is smaller than \((1,1,1,1)\)’s payoff because \((1,1,1,1)\) has the highest payoff among the pure strategy profiles (see “Appendix” for the payoffs), thus rational players would not prefer mixed strategy Nash equilibria.

  3. There exists one mixed strategy Nash equilibrium in this game, but its payoffs are smaller than \((B',B',B')\)’s (see “Appendix” for the payoffs), thus rational players would not prefer the mixed strategy Nash equilibrium.

  4. Any mixed strategy Nash equilibrium’s payoff is smaller than \((1,1,1)\)’s payoff because \((1,1,1)\) has the highest payoff among the pure strategy profiles (see “Appendix” for the payoffs), thus rational players would not prefer mixed strategy Nash equilibria.

References

  1. Myerson, R.B.: Game Theory: Analysis of Conflict. Havard University Press, Boston (1991)

    MATH  Google Scholar 

  2. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  3. Eisert, J., Wilkens, M., Lewsenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  4. Du, J.F., Li, H., Xu, X.D., Shi, M.J., Wu, J.H., Zhou, X.Y., Han, R.D.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)

    ADS  Google Scholar 

  5. Guo, H., Zhang, J.H., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46, 318 (2008)

    Google Scholar 

  6. Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  7. Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 37, 4437 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  8. Fra̧ckiewicz, P.: The ultimate solution to the quantum battle of the sexes game. J. Phys. A Math. Theor. 42, 365305 (2009)

    MathSciNet  Google Scholar 

  9. Pykacz, J., Fra̧ckiewicz, P.: Arbiter as the third man in classical and quantum games. Int. J. Theor. Phys. 49, 3243 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Fra̧ckiewicz, P.: Quantum information approach to normal representation of extensive games. Int. J. Quant. Inf. 10, 1250048 (2012)

    MathSciNet  Google Scholar 

  11. Iqbal, A., Toor, A.H.: Quantum repeated games. Phys. Lett. A 300, 541 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  12. Fra̧ckiewicz, P.: Quantum repeated games revisited. J. Phys. A Math. Theor. 45, 085307 (2012)

    ADS  MathSciNet  Google Scholar 

  13. Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)

    ADS  MathSciNet  Google Scholar 

  14. Nawaz, A., Toor, A.H.: Evolutionarily stable strategies in quantum Hawk–Dove game. Chin. Phys. Lett. 27, 050303 (2010)

    Google Scholar 

  15. Yu, T., Ben-Av, R.: Evolutionarily stable sets in quantum penny flip games. Quant. Inf. Process. 12, 2143 (2013)

    ADS  MATH  MathSciNet  Google Scholar 

  16. Iqbal, A., Toor, A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)

    ADS  MathSciNet  Google Scholar 

  17. Chen, K.-Y., Hogg, T., Beausoleil, R.: A quantum treatment of public goods economics. Quant. Inf. Process. 1, 449 (2002)

    MathSciNet  Google Scholar 

  18. Sekiguchi, Y., Sakahara, K., Sato, T.: Existence of equilibria in quantum Bertrand–Edgeworth duopoly game. Quant. Inf. Process. 11, 1371 (2012)

    ADS  MATH  MathSciNet  Google Scholar 

  19. Nawaz, A., Toor, A.H.: Quantum games with correlated noise. J. Phys. A Math. Gen. 39, 9321 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  20. Khan, S., Ramzan, M., Khan, M.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A Math. Theor. 43, 375301 (2010)

    MathSciNet  Google Scholar 

  21. Nawaz, A.: Prisoners’ dilemma in the presence of collective dephasing. J. Phys. A Math. Theor. 45, 195304 (2012)

    ADS  MathSciNet  Google Scholar 

  22. Gawron, P., Kurzyk, D., Pawela, L.: Decoherence effects in the quantum qubit flip game using Markovian approximation. Quant. Inf. Process. 13, 665 (2014)

    MATH  MathSciNet  Google Scholar 

  23. Chen, K.-Y., Hogg, T.: How well do people play a quantum prisoner’s dilemma? Quant. Inf. Process. 5, 43 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Chen, K.-Y., Hogg, T.: Experiments with probabilistic quantum auctions. Quant. Inf. Process. 7, 139 (2008)

    MATH  Google Scholar 

  25. Du, J.F., Li, H., Ju, C.Y.: Quantum games of asymmetric information. Phys. Rev. E 68, 016124 (2003)

    ADS  Google Scholar 

  26. Chen, X., Qin, G., Zhou, X.Y., Du, J.F.: Quantum games of continuous distributed incomplete information. Chin. Phys. Lett. 22, 1033 (2005)

    ADS  Google Scholar 

  27. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly with incomplete information. Phys. Lett. A 346, 65 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  28. Qin, G., Chen, X., Sun, M., Du, J.F.: Quantum Bertrand duopoly of incomplete information. J. Phys. A Math. Gen. 38, 4247 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  29. Li, H., Du, J.F., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306, 73 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  30. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  31. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  32. Benjamin, S.C.: Comment on “A quantum approach to static games of complete information”. Phys. Lett. A 277, 180 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  33. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  34. Marinatto, L., Weber, T.: Reply to “Comment on: A quantum approach to static games of complete information”. Phys. Lett. A 277, 183 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  35. Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A Math. Gen. 37, 11457 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  36. Fra̧ckiewicz, P.: A new model for quantum games based on the Marinatto–Weber approach. J. Phys. A Math. Theor. 46, 275301 (2013)

    MathSciNet  Google Scholar 

  37. Fra̧ckiewicz, P.: A comment on the generalization of the Marinatto–Weber quantum game scheme. Acta Phys. Polon. B 44, 29 (2013)

    ADS  MathSciNet  Google Scholar 

  38. Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)

    ADS  Google Scholar 

  39. Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    ADS  Google Scholar 

  40. Iqbal, A., Chappell, J.M., Li, Q., Abbott, D.: A probabilistic approach to the quantum Bayesian games of incomplete information. Quant. Inf. Process. 13, 2783 (2014)

    ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to Professor Weinstein, Editor-in-Chief, and the anonymous reviewers for their invaluable comments and detailed suggestions that helped to improve the quality of this paper. This work is supported by the Natural Science Foundation of Guangdong Province of China (Grant Nos. 2014A030310265, 2014A030313157) and the National Natural Science Foundation of China (Grant No. 61472452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haozhen Situ.

Appendix

Appendix

The appendix contains four tables. Table 1 lists the pure and mixed strategy Nash equilibria in the classical Bayesian game with symmetric information, which appears in Sect. 2. Table 2 lists the payoffs of the pure strategy profiles in the quantum Bayesian game with symmetric information, which appears in Sect. 4. Table 3 lists the pure and mixed strategy Nash equilibria in the classical Bayesian game with asymmetric information, which appears in Sect. 5. Table 4 lists the payoffs of the pure strategy profiles in the quantum Bayesian game with asymmetric information, which appears in Sect. 5.

Table 1 Classical Bayesian game with symmetric information
Table 2 Quantum Bayesian game with symmetric information
Table 3 Classical Bayesian game with asymmetric information
Table 4 Quantum Bayesian game with asymmetric information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Situ, H. Quantum Bayesian game with symmetric and asymmetric information. Quantum Inf Process 14, 1827–1840 (2015). https://doi.org/10.1007/s11128-015-0984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0984-2

Keywords

Navigation