Skip to main content
Log in

Quantum entanglement in the anisotropic Heisenberg model with multicomponent DM and KSEA interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using group-theoretical approach, we found a family of four nine-parameter quantum states for the two-spin-1/2 Heisenberg system in an external magnetic field and with multiple components of Dzyaloshinsky–Moriya (DM) and Kaplan–Shekhtman–Entin–Wohlman–Aharony (KSEA) interactions. Exact analytical formulas are derived for the entanglement of formation for the quantum states found. The influence of DM and KSEA interactions on the behavior of entanglement and on the shape of disentangled region is studied. A connection between the two-qubit quantum states and the reduced density matrices of many-particle systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A centrosymmetric matrix is a matrix which is symmetric about its center. The entries of such a matrix \(n\times n\) satisfy the relations \(a_{i,j}=a_{n+1-i,n+1-j}\) with \(i,j=1,\ldots ,n\). The properties of CS matrices are described in [41,42,43].

References

  1. Nielsen, M.A., Chung, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Valiev, K.A., Kokin, A.A.: Quantum Computers: Hops and Reality. Research Center “Regular and Chaotic Dynamics”. Moscow and Izhevsk (2002) (in Russian)

  3. Valiev, K.A.: Quantum computers and quantum computations. Usp. Fiz. Nauk. 175, 3 (2005). (in Russian)

    Article  MATH  Google Scholar 

  4. Valiev, K.A.: Quantum computers and quantum computations. Phys. Usp. 48, 1 (2005). (in English)

    Article  ADS  Google Scholar 

  5. Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Inf. Comput. 6, 630 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Wootters, W.K.: Quantum entanglement as a quantifiable resource. Philos. Trans. R. Soc. Lond. A 356, 1717 (1998)

    Article  ADS  Google Scholar 

  8. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  9. Yin, J., Li, Y.-H., Liao, S.-K., Yang, M., Cao, Y., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, S.-L., Shu, R., Huang, Y.-M., Deng, L., Li, L., Zhang, Q., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Wang, X.-B., Xu, F., Wang, J.-Y., Peng, C.-Z., Ekert, A.K., Pan, J.-W.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501 (2020)

    Article  ADS  Google Scholar 

  10. Pezzè, L., Smerzi, A., Oberthaler, M.K., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Degen, C.L., Reinhard, V., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724 (2018)

    Article  ADS  Google Scholar 

  13. Lugiato, L.A., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B Quantum Semiclass. Opt. 4, S176 (2002)

    Article  ADS  Google Scholar 

  14. Zheltikov, A.M., Scully, M.O.: Photon entanglement for life-science imaging: rethinking the limits of the possible. Uspekhi Fiz. Nauk. 190, 749 (2020). (in Russian)

    Article  Google Scholar 

  15. Zheltikov, A.M., Scully, M.O.: Photon entanglement for life-science imaging: rethinking the limits of the possible. Phys. Usp. 63, 698 (2020). (in English)

    Article  ADS  Google Scholar 

  16. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  17. Lloyd, S.: Universal quantum simulators. Science 273, 1073 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Johnson, T.H., Clark, S.R., Jaksch, D.: What is a quantum simulator? EPJ Quantum Technol. 1, 10 (2014)

    Article  Google Scholar 

  19. Altman, E., Brown, K.R., Carleo, G., et al.: Quantum simulators: architectures and opportunities. arXiv:1912.06938v2 [quant-ph]

  20. Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545 (2016)

    Article  ADS  Google Scholar 

  21. Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G. (eds.): Thermodynamics in the Quantum Regime. Springer, Berlin (2018)

    Google Scholar 

  22. Deffner, S., Campbell, S.: Quantum Thermodynamics: An Introduction to the Thermodynamics of Quantum Information. Morgan and Claypool, San Rafael (2019)

    Book  MATH  Google Scholar 

  23. Ono, K., Shevchenko, S.N., Mori, T., Moriyama, S., Nori, F.: Analog of a quantum heat engine using a single-spin qubit. Phys. Rev. Lett. 125, 166802 (2020)

    Article  ADS  Google Scholar 

  24. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  25. Gyftopoulos, E.P.: Quantum coherence engines. arXiv:0706.2947v1 [quant-ph]

  26. Yi, J., Talkner, P., Kim, Y.W.: Single-temperature quantum engine without feedback control. Phys. Rev. E 96, 022108 (2017)

    Article  ADS  Google Scholar 

  27. Barrios, G.A., Albarrán-Arriagada, F., Cárdenas-López, F.A., Romero, G., Retamal, J.C.: Role of quantum correlations in light-matter quantum heat engines. Phys. Rev. A 96, 052119 (2017)

    Article  ADS  MATH  Google Scholar 

  28. de Assis, R.J., de Mendonca, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019)

    Article  Google Scholar 

  29. Cakmak, S., Candır, M., Altintas, F.: Construction of a quantum Carnot heat engine cycle. Quantum Inf. Process. 19, 314 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ćwikliéński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210413 (2015)

    Google Scholar 

  32. Kirsanov, N.S., Lebedev, A.V., Suslov, V.M., Vinokur, V.M., Blatter, G., Lesovik, G.B.: Entropy dynamics in the system of interacting qubits. J. Russ. Laser Res. 39, 120 (2018)

    Article  Google Scholar 

  33. Bera, M.L., Lewenstein, M., Bera, M.N.: The second laws for quantum and nano-scale heat engines. arXiv:1911.07003v1 [quant-ph]

  34. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  35. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  37. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  38. O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2001)

    Article  ADS  Google Scholar 

  39. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007)

  40. Fel’dman, E.B., Kuznetsova, E.I., Yurishchev, M.A.: Quantum correlations in a system of nuclear \(s=1/2\) spins in a strong magnetic field. J. Phys. A Math. Theor. 45, 475304 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Weaver, J.R.: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. Am. Math. Mon. 92, 711 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ikramov, KhD: The monotonicity of the eigenvalues of doubly symmetric matrices. Zh. Vychisl. Mat. Mat. Fiz. 33, 620 (1993). (in Russian)

    MathSciNet  MATH  Google Scholar 

  43. Ikramov, KhD: The monotonicity of the eigenvalues of doubly symmetric matrices. Comput. Math. Math. Phys. 33, 561 (1993). (in English)

    MathSciNet  Google Scholar 

  44. Yurischev, M.A.: On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions. Quantum Inf. Process 19, 336 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. Nielsen, M.A.: Quantum information theory. Ph.D. Dissertation, The University of New Mexico (1998). arXiv:quant-ph/0011036

  46. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  47. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  48. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  49. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ficek, Z., Tanaś, R.: Sudden birth and sudden death of entanglement. J. Comput. Methods Sci. Eng. 10, 265 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Wang, F., Hou, P.-Y., Huang, Y.-Y., Zhang, W.-G., Ouyang, X.-L., Wang, X., Huang, X.-Z., Zhang, H.-L., He, L., Chang, X.-Y., Duan, L.-M.: Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath. Phys. Rev. B 98, 064306 (2018)

    Article  ADS  Google Scholar 

  52. Sharma, K.K., Gerdt, V.P.: Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int. J. Theor. Phys. 59, 403 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Non-relativistic Theory. Fizmatlit, Moscow (2005). (in Russian)

    MATH  Google Scholar 

  54. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Non-relativistic Theory. Pergamon, Oxford (1965). (in English)

    MATH  Google Scholar 

  55. Hamermesh, M.: Group Theory and Its Application to Physical Problems. Addison-Wesley, Massachusetts (1962)

    Book  MATH  Google Scholar 

  56. Park, D.: Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii-Moriya interactions. Quantum Inf. Process. 18, 172 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review. Dover (Press), New York (2000)

    MATH  Google Scholar 

  58. Madelung, E.: Die mathematischen Hilfsmittel des Physikers. Springer, Berlin (1957)

    Book  MATH  Google Scholar 

  59. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Xi, X.-Q., Zhang, T., Yue, R.-H., Liu, W.-M.: Pairwise entanglement and local polarization of Heisenberg model. Sci. China G Phys. Mech. Astron. 51, 1515 (2008)

    Article  ADS  Google Scholar 

  63. Wang, X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002)

    Article  ADS  Google Scholar 

  64. Osborne, T.J., Nielsen, M.A.: Entanglement in simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  65. Gombar, S., Mali, P., Pantic, M., Pavkov-Hrvojevic, M., Radosevic, S.: Correlation between quantum entanglement and quantum coherence in the case of XY spin chains with the Dzyaloshinskii-Moriya interaction. ZhETF 158, 228 (2020). (in Russian)

    Google Scholar 

  66. Gombar, S., Mali, P., Pantic, M., Pavkov-Hrvojevic, M., Radosevic, S.: Correlation between quantum entanglement and quantum coherence in the case of XY spin chains with the Dzyaloshinskii-Moriya interaction. JETP 131, 209 (2020). (in English)

    Article  ADS  Google Scholar 

  67. Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714 (1929)

    Article  ADS  MATH  Google Scholar 

  68. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1930)

    MATH  Google Scholar 

  69. Wang, X., Mølmer, K.: Pairwise entanglement in symmetric multi-qubit systems. Eur. Phys. J. D 18, 385 (2002)

    Article  ADS  Google Scholar 

  70. Wang, X., Sanders, B.C.: Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A 68, 012101 (2003)

    Article  ADS  Google Scholar 

  71. Vidal, J.: Concurrence in collective models. Phys. Rev. A 73, 062318 (2006)

    Article  ADS  Google Scholar 

  72. Khedif, Y., Daoud, M.: Pairwise nonclassical correlations for superposition of Dicke states via local quantum uncertainty and trace distance discord. Quantum Inf. Process. 18, 45 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed as a part of the program CITIS # AAAA-A19-119071190017-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yurischev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, A.V., Yurischev, M.A. Quantum entanglement in the anisotropic Heisenberg model with multicomponent DM and KSEA interactions. Quantum Inf Process 20, 169 (2021). https://doi.org/10.1007/s11128-021-03113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03113-0

Keywords

Navigation