Skip to main content
Log in

Entropy Dynamics in the System of Interacting Qubits

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The classical second law of thermodynamics demands that an isolated system evolves with a nondiminishing entropy. This holds as well in quantum mechanics if the evolution of the energy-isolated system can be described by a unital quantum channel. At the same time, the entropy of a system evolving via a nonunital channel can, in principle, decrease. Here, we analyze the behavior of entropy in the context of the H-theorem. As exemplary phenomena, we discuss the action of a Maxwell demon (MD) operating a qubit and the processes of heating and cooling in a two-qubit system. Further we discuss how small initial correlations between a quantum system and a reservoir affect the entropy increase during the quantum-system evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sir W. Thomson, Mathematical and Physical Papers, Cambridge University Press, Cambridge, UK (1882).

  2. S. Carnot, “Réflexions sur la puissance motrice de feu et sur les machines propres à développer cette puissance,” Bachelier, Paris (1824).

    MATH  Google Scholar 

  3. M. Horodecki and J. Oppenheim, Nat. Commun., 4, 2059 (2013).

    Article  ADS  Google Scholar 

  4. F. Brandao, M. Horodecki, N. Ng, et al., Proc. Natl. Acad. Sci. USA, 112, 3275 (2015).

    Article  ADS  Google Scholar 

  5. P. Skrzypczyk, A. J. Short, and S. Popescu, Nat. Commun., 5, 1 (2014).

    Article  Google Scholar 

  6. N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. Lett., 105, 130401 (2010).

    Article  ADS  Google Scholar 

  7. N. Brunner, N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. E, 85, 051117 (2012).

    Article  ADS  Google Scholar 

  8. S. Lloyd, Phys. Rev. A, 56, 3374 (1997).

    Article  ADS  Google Scholar 

  9. M. O. Scully, Phys. Rev. Lett., 87, 220601 (2001).

    Article  ADS  Google Scholar 

  10. H. T. Quan, Y. D. Wang, Yu-xi Liu, et al., Phys. Rev. Lett., 97, 180402 (2006).

  11. H. T. Quan, Yu-xi Liu, C. P. Sun, and F. Nori, Phys. Rev. E, 76, 031105 (2007).

  12. D. Venturelli, R. Fazio, and V. Giovannetti, Phys. Rev. Lett., 110, 256801 (2013).

    Article  ADS  Google Scholar 

  13. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK (2011).

    MATH  Google Scholar 

  14. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction, De Gruyter, Berlin (2012).

  15. A. S. Holevo, Doklady Math., 82, 730 (2010).

    Article  MathSciNet  Google Scholar 

  16. G. B. Lesovik, A. V. Lebedev, I. A. Sadovskyy, et al., Sci. Rep., 6, 32815 (2016).

    Article  ADS  Google Scholar 

  17. A. V. Lebedev, D. Oehri, G. B. Lesovik, and G. Blatter, Phys. Rev. A, 94, 052133 (2016).

    Article  ADS  Google Scholar 

  18. J. P. Pekola, D. S. Golubev, and D. V. Averin, Phys. Rev. B, 93, 024501 (2016).

    Article  ADS  Google Scholar 

  19. D. Oehri, A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev. B, 93, 045308 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kirsanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsanov, N.S., Lebedev, A.V., Suslov, M.V. et al. Entropy Dynamics in the System of Interacting Qubits. J Russ Laser Res 39, 120–127 (2018). https://doi.org/10.1007/s10946-018-9698-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9698-0

Keywords

Navigation