Skip to main content
Log in

Quantum Entanglement in Heisenberg Model with Dzyaloshinskii-Moriya Interactions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the two-site cluster mean-field method and the concept of negativity, the magnetization and entanglement of spin-1 quantum ferromagnetic Heisenberg model with Dzyaloshinskii-Moriya (DM) interactions on d-dimensional (\(d=1,2,3,4\)) lattices are studied. The phase transitions and the variations of the negativity with temperature, anisotropy and DM interaction parameters are obtained. It is found that in the systems there are both second-order, first-order phase transitions and tricritical points. For the one-dimensional system, there is a maximum value of the negativity at a certain temperature which corresponds to the phase transition point for the case of first-order phase transition, and the maximum value increases with the increase of the DM interaction intensity. We also find that for two-dimensional square lattice with different temperature values, negativity increases with increasing DM interaction, and finally approaches to the same value. There is a lower limit of the DM interaction intensity (or temperature) above which negativity exists. In addition, we discuss the effect of the dimension on the magnetization, negativity and tricritical point. The results show that the tricritical temperature is independent of the exchange anisotropy parameter \(\Delta\), and the lower the dimension, the more obvious the quantum effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum communication. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). https://doi.org/10.1103/RevModPhys.80.517

  3. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010). https://doi.org/10.1103/RevModPhys.82.277

  4. Nishioka, T.: Entanglement entropy: Holography and renormalization group. Rev. Mod. Phys. 90, 035007 (2018). https://doi.org/10.1103/RevModPhys.90.035007

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, Karol.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

  6. Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physicals reality be considered complete. Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

  7. Osterloh, A., Amico, L., Falci, G., Rosario, F.: Scaling of entanglement close to a quantum phase transition. Nature (London) 416, 608–610 (2002). https://doi.org/10.1038/416608a

    Article  ADS  Google Scholar 

  8. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002). https://doi.org/10.1103/PhysRevA.66.032110

    Article  ADS  MathSciNet  Google Scholar 

  9. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004). https://doi.org/10.1103/PhysRevLett.93.250404

    Article  ADS  MathSciNet  Google Scholar 

  10. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). https://doi.org/10.1103/PhysRevLett.90.227902

    Article  ADS  Google Scholar 

  11. Vidal, J., Palacios, G., Mosseri, R.: Entanglement in a second-order quantum phase transition. Phys. Rev. A 69, 022107 (2004). https://doi.org/10.1103/PhysRevA.69.022107

    Article  ADS  Google Scholar 

  12. Guo, Y.B., Yu, Y.C., Huang, R.Z.: Entanglement entropy of non-Hermitian free fermions. J. Phys: Condens Mat. 33, 475502 (2021)

    Google Scholar 

  13. Zhang, P.P., Wang, J., Xu, Y.L., Wang, C.Y., Kong, X.M.: Quantum entanglements in mixed-spin XY systems. Physica A 566, 125643 (2021). https://doi.org/10.1016/j.physa.2020.125643

  14. Wang, X.G.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001). https://doi.org/10.1103/PhysRevA.64.012313

  15. Sun, Y., Chen, Y., Chen, H.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 88, 107901 (2002). https://doi.org/10.1103/PhysRevA.68.044301

  16. Zhang, L., Tong, P.: Entanglement of periodic anisotropic XY chains. J. Phys. A: Math. Gen. 38, 7377–7388 (2005). https://doi.org/10.1088/0305-4470/38/33/011

  17. Its, A.R., Jin, B.Q., Korepin, V.E.: Entanglement in the XY spin chains. J. Phys. A: Math. Gen. 38, 2975–2990 (2005). https://doi.org/10.1088/0305-4470/38/13/011

  18. Mehran, E., Mahdavifar, S., Jafari, R.: Induced effects of the Dzyaloshinskii-Moriya interaction on the thermal entanglement in spin-1/2 Heisenberg chains. Phys. Rev. A 89, 042306 (2014). https://doi.org/10.1103/PhysRevA.89.042306

  19. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. A 87, 017901 (2001). https://doi.org/10.1103/PhysRevLett.87.017901

  20. Zhou, L., Song, H.S., Guo, Y.Q.: Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phys. Rev. A 68, 024301 (2003). https://doi.org/10.1103/PhysRevA.68.024301

  21. Abliz, A., Gao, H.J., Xie, X.C.: Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields. Phys. Rev. A 74, 052105 (2006). https://doi.org/10.1103/PhysRevA.74.052105

  22. Wang, X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002). https://doi.org/10.1103/PhysRevA.66.034302

  23. Ren, J., Wu, Y.Z., Zhu, S.Q.: Quantum discord and entanglement in Heisenberg XXZ spin chain after quenches. Chinese. Phys. Lett. 29, 060305 (2012). https://doi.org/10.1088/0256-307X/29/6/060305

  24. Dzyaloshinsky, I.: A Thermodynamic theory of weak ferromagnetism of antiferromagnetics. Phys. Chem. Solids. 4, 241–245 (1958). https://doi.org/10.1016/0022-3697(58)90076-3

  25. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960). https://doi.org/10.1103/PhysRevLett.4.228

  26. Lee, C.Y., Normand, B., Kao, Y.J.: Gapless spin liquid in the kagome Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions. Phys. Rev. B 98, 224414 (2018). https://doi.org/10.1103/PhysRevB.98.224414

  27. Idogaki, T., Uryu, N.: A new effective field theory for the anisotropic Heisenberg ferromagnet. Physica A, 181, 173–186 (1992). https://doi.org/10.1016/0378-4371(92)90201-Z

  28. Ricardo de Sousa, J., Lacerda, F., Fittipaldi, I.P.: Thermal behavior of a Heisenberg model with DM interaction. J. Magn. Magn. Mater. 140-144, 1501–1502 (1995). https://doi.org/10.1016/0304-8853(94)00911-2

  29. Lacerda, F., Ricardo de Sousa, J., Fittipaldi, I.P.: Thermodynamical properties of a Heisenberg model with Dzyaloshinski-Moriya interactions. J. Appl. Phys 75, 5829 (1994). https://doi.org/10.1063/1.355582

  30. Ricardo de Sousa, J., Fittipaldi, I.P.: Tricritical behavior of a Heisenberg model with Dzyaloshinski-Moriya interaction. Phys. Lett. A 191, 275–278 (1994). https://doi.org/10.1016/0375-9601(94)90139-2

  31. Sun, G.H., Kong, X.M.: Phase diagram and tricritical behavior of the spin-1 Heisenberg model with Dzyaloshinskii-Moriya interactions. Physica A 370, 585–590 (2006). https://doi.org/10.1016/j.physa.2006.03.025

  32. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

  33. Yamamoto, D.: Correlated cluster mean-field theory for spin systems. Phys. Rev. B 79, 144427 (2009). https://doi.org/10.1103/PhysRevB.79.144427

  34. Li, D.C., Cao, Z.L.: Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii-Moriy ainteraction and inhomogeneous magnetic field. Eur. Phys. J. D 50, 207–214 (2008). https://doi.org/10.1140/epjd/e2008-00208-x

  35. Khedif, Y., Errehymy, A., Daoud, M.: On the thermal nonclassical correlations in a two-spin XYZ Heisenberg model with Dzyaloshinskii–Moriya interaction. Eur. Phys. J. Plus 136, 336 (2021). https://doi.org/10.1140/epjp/s13360-021-01254-w

  36. Li, D.C., Wang, X.P., Cao, Z.L.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys.: Condens. Matter 20 325229 (2008) http://iopscience.iop.org/0953-8984/20/32/325229

  37. Li, S.S., Ren, T.Q., Kong, X.M., Liu, K.: Thermal entanglement in the Heisenberg XXZ model with Dzyaloshinskii-Moriya interaction. Physica A 39, 135–141 (2012)

    Google Scholar 

  38. Houca, R.: Entanglement in a two-qubit Heisenberg XXX model with x-components of Dzyaloshinskii–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions. Quant. Inf. Process. 21, 200 (2022). https://doi.org/10.1007/s11128-022-03544-3

Download references

Acknowledgements

Q. Li would like to thank Chunyang Wang, Lizhen Hu, Panpan Zhang, Yue Li, Zhenhui Sun and Xiuying Zhang for fruitful discussions and useful comments.

Funding

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11675090 and 11905095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmu Kong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Miao, C., Xu, Y. et al. Quantum Entanglement in Heisenberg Model with Dzyaloshinskii-Moriya Interactions. J Supercond Nov Magn 36, 957–964 (2023). https://doi.org/10.1007/s10948-023-06523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06523-6

Keywords

Navigation