Skip to main content
Log in

Multi-server blind quantum computation over collective-noise channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 87(5), 050301 (2013)

    Article  ADS  Google Scholar 

  3. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 09). IEEE. pp. 517–526 (2009)

  4. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5(6), 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)

    Article  ADS  Google Scholar 

  6. Chien, C.H., Meter, R.V., Kuo, S.Y.: Fault-tolerant operations for universal blind quantum computation. ACM J. Emerg. Technol. Comput. Syst. JETC 12(1), 9 (2015)

    Google Scholar 

  7. Takeuchi, Y., Fujii, K., Ikuta, R., et al.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93(5), 052307 (2016)

    Article  ADS  Google Scholar 

  8. Sheng, Y.B., Zhou, L.: Blind Quantum Computation with Noise Environment. arXiv:1609.08902 (2016)

  9. Fitzsimons, J.F., Kashefi, E.: Unconditionally Verifiable Blind Computation. arXiv:1203.5217 (2012)

  10. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108(20), 200502 (2012)

    Article  ADS  Google Scholar 

  11. Morimae, T., Koshiba, T.: Impossibility of Perfectly-Secure Delegated Quantum Computing for Classical Client. arXiv:1407.1636 (2014)

  12. Aaronson, S., Cojocaru, A., Gheorghiu, A., et al.: On the Implausibility of Classical Client Blind Quantum Computing. arXiv:1704.08482 (2017)

  13. Mantri, A., Demarie, T.F., Menicucci, N.C., et al.: Flow ambiguity: A path towards classically driven blind quantum computation. Phys. Rev. X 7(3), 031004 (2017)

    Google Scholar 

  14. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Annual Cryptology Conference, pp. 609–629. Springer, Berlin (2015)

  15. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Annual Cryptology Conference. pp. 3–32. Springer, Berlin (2016)

  16. Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111(2), 020502 (2013)

    Article  ADS  Google Scholar 

  17. Zhou, L., Sheng, Y.B.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  18. Li, Q., Chan, W.H., Wu, C., et al.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89(4), 040302 (2014)

    Article  ADS  Google Scholar 

  19. Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  20. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., et al.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dür, W., Briegel, H.J.: Entanglement purification and quantum error correction. Rep. Prog. Phys. 70(8), 1381 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  23. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  24. Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inform. 7(08), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  25. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498C501 (2000)

    Article  Google Scholar 

  26. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(8), 087901 (2003)

    Article  ADS  Google Scholar 

  27. Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  28. Ye, T.Y.: Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise. Sci. Sin. Phys. Mech. Astron. 45(4), 40301 (2015)

    Article  Google Scholar 

  29. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)

    Article  ADS  MATH  Google Scholar 

  30. Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical bell states. Int. J. Theor. Phys. 55(1), 457–469 (2016)

    Article  MATH  Google Scholar 

  31. Ye, T.Y.: Fault-tolerant quantum dialogue without information leakage based on entanglement swapping between two logical bell states. Commun. Theor. Phys. 63(4), 431 (2015)

    Article  ADS  MATH  Google Scholar 

  32. Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14(9), 3499–3514 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)

    Article  ADS  MATH  Google Scholar 

  34. Kempe, J., Bacon, D., Lidar, D., Whaley, K.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)

    Article  ADS  Google Scholar 

  35. Gu, B., Mu, L., Ding, L., et al.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project were supported by the National Key R&D Program of China under Grant 2017YFB0802300; and Foundation Science and Forefront Technology of Chongqing Science and Technology Commission of China under Grant No. cstc2016jcyjA0571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Liu, L. & Song, X. Multi-server blind quantum computation over collective-noise channels. Quantum Inf Process 17, 63 (2018). https://doi.org/10.1007/s11128-018-1810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1810-4

Keywords

Navigation