Skip to main content
Log in

The Arrangement of MicroRNAs in the Regulation of Drought Stress Response in Plants: A Systematic Review

  • REVIEW
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

MiRNAs have received much attention over the last 2 decades as one of the major regulators of drought response in the plant. However, there has been little systematic discussion of the identified drought-responsive miRNAs. This paper is an overview of conducted studies until March 1, 2020, to identify frequent drought-responsive miRNAs (DRMs), their expression patterns, and functional roles. The present study organized 5628 records of detected DRMs from 40 flowering plants. Based on the available data, 72% of these DRMs are detected by deep sequencing techniques. Oryza Sativa was uncovered as the most frequently studied species under drought stress. Likewise, leaf tissue was detected as the most examined tissue. The present study noticed dissimilar expression patterns of DRMs in the various plant species which could be exemplified in Oryza sativa and Triticum aestivum that their DRMs were more promoted and inhibited under drought stress, respectively. Results of this study proposed miR166, miR169, miR172, miR396, and miR399 as frequently down-regulated DRMs while miR160 was suggested as an up-regulated DRM in many instances. Based on the reported data, it would seem to suggest a reverses expression patterns for some DRMs between drought tolerant and sensitive varieties (like miR156, miR159, miR395, and miR393) or shoot and root tissues (like miR156, miR171, and miR812). According to the previous functional studies of miRNAs, miR156, miR529, miR1119, miR159, miR172, miR319, miR394, and miR396 were categorized as positive regulators while mir166, miR160, and miR1916 were classified as negative regulators of drought stress tolerance induction. The outcome of various experiments led to the conclusion that although miRNAs are numerous with dynamic activity, a systematical study could uncover their discipline in the regulation of environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available in the Supplementary file 1.

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Akdogan G, Tufekci ED, Uranbey S, Unver T (2016) miRNA-based drought regulation in wheat. Func Integr Genomic 16:221–233

    Article  CAS  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. P Natl A Sci 104:16371–16376

    Article  CAS  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso-Peral MM, Sun C, Millar AA (2012) MicroRNA159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis. PLoS ONE 7:e34751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anjali N, Nadiya F, Thomas J, Sabu K (2019) Identification and characterization of drought responsive microRNAs and their target genes in cardamom (Elettaria cardamomum Maton). Plant Growth Regul 87:201–216

    Article  CAS  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Gruber MY, Hannoufa A (2018) Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Awasthi JP, Chandra T, Mishra S, Parmar S, Shaw BP, Nilawe PD, Chauhan NK, Sahoo S, Panda SK (2019) Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1–12-3. Plant Physiol Bioch 137:62–74

    Article  CAS  Google Scholar 

  • Bae JY (2019) Overexpressing drought-responsive miRNA 156 in rice (Oryza sativa L.) enhances drought stress resistance Seoul National University

  • Bakhshi B, Fard EM, Gharechahi J, Safarzadeh M, Nikpay N, Fotovat R, Azimi MR, Salekdeh GH (2017) The contrasting microRNA content of a drought tolerant and a drought susceptible wheat cultivar. J Plant Physiol 216:35–43

    Article  CAS  PubMed  Google Scholar 

  • Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH (2016) MicroRNA signatures of drought signaling in rice root. PLoS ONE 11:e0156814

    Article  PubMed Central  PubMed  Google Scholar 

  • Balyan S, Kumar M, Mutum RD, Raghuvanshi U, Agarwal P, Mathur S, Raghuvanshi S (2017) Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci Rep 7:1–17

    Article  CAS  Google Scholar 

  • Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  PubMed Central  PubMed  Google Scholar 

  • Barozai MYK, Ye Z, Sangireddy SR, Zhou S (2018) Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress. Agri Gene 8:1–8

    Article  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu J-K, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

  • Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132. https://doi.org/10.1186/1471-2229-12-132

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Cr Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inze D, Pe ME, Mica E (2013) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant 6:423–443. https://doi.org/10.1093/mp/sss160

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar A (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15:791–799

    Article  CAS  PubMed  Google Scholar 

  • Cheah BH, Nadarajah K, Divate MD, Wickneswari R (2015) Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genomics 16:692

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen L, Luan Y, Zhai J (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Meng J, Luan Y (2019) miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco. Biochem Biophys Res Commun 508:597–602

    Article  CAS  PubMed  Google Scholar 

  • Choi J (2019) Overexpression of OsmiR171f, a drought-inducible microRNA, enhances drought tolerance in rice. Seoul National University

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL 9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot 65:1425–1438. https://doi.org/10.1093/jxb/eru002

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086. https://doi.org/10.1093/jxb/ert164

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Zhang J, Zhu Q, Zhao L, Sui S, Li Z, Zhang Y, Wang H, Tian D, Zhao Y (2018) Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing. Genes Genom 40:305–314

    Article  CAS  Google Scholar 

  • Duan H, Lu X, Lian C, An Y, Xia X, Yin W (2016) Genome-wide analysis of microRNA responses to the phytohormone abscisic acid in Populus euphratica. Front Plant Sci 7:1184

    Article  PubMed Central  PubMed  Google Scholar 

  • El Sanousi RS, Hamza NB, Abdelmula AA, Mohammed IA, Gasim SM, Sanan-Mishra N (2016) Differential expression of miRNAs in Sorghum bicolor under drought and salt stress. Am J Plant Sci 7:870

    Article  Google Scholar 

  • Fan G, Liu Y, Du H, Kuang T, Zhang Y (2020) Identification of drought-responsive miRNAs in Hippophae tibetana using high-throughput sequencing. 3 Biotech 10:53

  • Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65:2119–2135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fard EM, Bakhshi B, Farsi M, Kakhki AM, Nikpay N, Ebrahimi MA, Mardi M, Salekdeh GH (2017a) MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots. Mol Biosyst 13:2289–2302

  • Fard EM, Bakhshi B, Keshavarznia R, Nikpay N, Shahbazi M, Salekdeh GH (2017b) Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol Bioch 118:121–129

    Article  CAS  Google Scholar 

  • Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ (2017a) Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ 40:11–24

    Article  CAS  PubMed  Google Scholar 

  • Ferdous J, Whitford R, Nguyen M, Brien C, Langridge P, Tricker PJ (2017b) Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genomics 17:279–292

    Article  CAS  PubMed  Google Scholar 

  • Feyissa BA, Arshad M, Gruber MY, Kohalmi SE, Hannoufa A (2019) The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. BMC Plant Biol 19:1–19

    Article  CAS  Google Scholar 

  • Gao F, Wang N, Li H, Liu J, Fu C, Xiao Z, Wei C, Lu X, Feng J, Zhou Y (2016) Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing. Sci Rep 6:1–16

    Google Scholar 

  • Ghorecha V, Patel K, Ingle S, Sunkar R, Krishnayya N (2014) Analysis of biochemical variations and microRNA expression in wild (Ipomoea campanulata) and cultivated (Jacquemontia pentantha) species exposed to in vivo water stress. Physiol Mol Biol Pla 20:57–67

    Article  CAS  Google Scholar 

  • Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z (2017) Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol 17:211

  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13. https://doi.org/10.1111/pbi.12220

  • Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193. https://doi.org/10.1016/j.gene.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20:88–98

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang X, Wang Y, Ming F (2013) The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS ONE 8:e73541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho T, Pak H, Ryom C, Han M (2019) Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass. Plant Biotechnol Rep 13:85–93

    Article  Google Scholar 

  • Hua Y, Zhang C, Shi W, Chen H (2019) High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (Triticum aestivum L.). Biotechnol Biotec Eq 33:465–471

    Article  CAS  Google Scholar 

  • Hwang E-W, Shin S-J, Kwon H-B (2011a) Identification of microRNAs and their putative targets that respond to drought stress in Solanum tuberosum. J Korean Soc Appl Bi 54:317–324

    Article  CAS  Google Scholar 

  • Hwang E-W, Shin S-J, Park S-C, Jeong M-J, Kwon H-B (2011b) Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum. Genes Genom 33:105

    Article  CAS  Google Scholar 

  • Hwang E-W, Shin S-J, Yu B-K, Byun M-O, Kwon H-B (2011c) miR171 family members are involved in drought response in Solanum tuberosum. J Plant Biol 54:43–48

    Article  CAS  Google Scholar 

  • Jian H, Wang J, Wang T, Wei L, Li J, Liu L (2016) Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Front Plant Sci 7:658

    Article  PubMed Central  PubMed  Google Scholar 

  • Jovanović Ž, Stanisavljević N, Mikić A, Radović S, Maksimović V (2014) Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.). Plant Physiol Bioch 83:26–31

    Article  Google Scholar 

  • Kang T, Yu C-Y, Liu Y, Song W-M, Bao Y, Guo X, Li B, Zhang H (2019) Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci 10:1664

    Article  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomic 10:493–507

    Article  CAS  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerão MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimarães FC (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuruvilla L, Sathik M, Luke LP, Thomas M (2019) Identification and validation of drought-responsive microRNAs from Hevea brasiliensis. Acta Physiol Plant 41:14

    Article  Google Scholar 

  • Kuruvilla L, Sathik M, Thomas M, Luke LP, Sumesh K, Annamalainathan K (2016) Expression of miRNAs of Hevea brasiliensis under drought stress is altered in clones with varying levels of drought tolerance. Indian J Biotechnol 15:153–160

    CAS  Google Scholar 

  • Levin J (1980) Responses of plants to environmental stresses. Academic Press, New York, NY

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011a) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011b) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170. https://doi.org/10.1186/1471-2229-11-170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J-S, Fu F-l, Ming A, Zhou S-F, She Y-H, Li W-C (2013) Differential expression of microRNAs in response to drought stress in maize. J Integr Agr 12:1414–1422

    Article  Google Scholar 

  • Li W-X, Oono Y, Zhu J, He X-J, Wu J-M, Iida K, Lu X-Y, Cui X, Jin H, Zhu J-K (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 67:175–194

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wan L, Bi S, Wan X, Li Z, Cao J, Tong Z, Xu H, He F, Li X (2017) Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes 8:119

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA (2015) Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS ONE 10:e0142799

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu H, Zhao Z, Wang L, Deng M, Zhai X, Dong Y, Fan G (2017a) Genome-wide expression analysis of transcripts, microRNAs, and the degradome in Paulownia tomentosa under drought stress. Tree Genet Genomes 13:128

    Article  Google Scholar 

  • Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B (2017b) Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 18:481

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B (2018) Identification of drought-responsive microRNAs in tomato using high-throughput sequencing. Funct Integr Genomic 18:67–78

    Article  CAS  Google Scholar 

  • Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384:1–5. https://doi.org/10.1016/j.bbrc.2009.04.028

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728. https://doi.org/10.1016/j.febslet.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  • Liu SC, Xu YX, Ma JQ, Wang WW, Chen W, Huang DJ, Fang J, Li XJ, Chen L (2016) Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress. Physiol Plantarum 158:435–451

    Article  CAS  Google Scholar 

  • Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y (2019) Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS ONE 14:e0219176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López-Galiano MJ, García-Robles I, González-Hernández AI, Camañes G, Vicedo B, Real MD, Rausell C (2019) Expression of miR159 is altered in tomato plants undergoing drought stress. Plants 8:201

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma C, Burd S, Lers A (2015a) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Xin Z, Wang Z, Yang Q, Guo S, Guo X, Cao L, Lin T (2015b) Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol 15:21

  • Martinelli F, Cannarozzi G, Balan B, Siegrist F, Weichert A, Blösch R, Tadele Z (2018) Identification of miRNAs linked with the drought response of tef [Eragrostis tef (Zucc.) Trotter]. J Plant Physiol 224:163–172

    Article  PubMed  Google Scholar 

  • Millar AA, Lohe A, Wong G (2019) Biology and function of miR159 in plants. Plants 8:255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murray F, Kalla R, Jacobsen J, Gubler F (2003) A role for HvGAMYB in anther development. Plant J 33:481–491

    Article  CAS  PubMed  Google Scholar 

  • Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S (2013) Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 280:1717–1730. https://doi.org/10.1111/febs.12186

    Article  CAS  PubMed  Google Scholar 

  • Nageshbabu R, Jyothi M, Sharadamma N, Rai D, Devaraj V (2013) Expression of miRNAs confers enhanced tolerance to drought and salt stress in Finger millet (Eleusine coracona). J Stress Physiol Biochem 9

  • Ni Z, Hu Z, Jiang Q, Zhang H (2012) Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 427:330–335. https://doi.org/10.1016/j.bbrc.2012.09.055

    Article  CAS  PubMed  Google Scholar 

  • Niu C, Li H, Jiang L, Yan M, Li C, Geng D, Xie Y, Yan Y, Shen X, Chen P (2019) Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies. Hortic Res 6:1–18

    Article  CAS  Google Scholar 

  • Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau MT, Chu C (2018) Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol 60:323–340

    Article  CAS  PubMed  Google Scholar 

  • Phookaew P, Netrphan S, Sojikul P, Narangajavana J (2014) Involvement of miR164-and miR167-mediated target gene expressions in responses to water deficit in cassava. Biol Plantarum 58:469–478

    Article  CAS  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12:327–339

  • Sanz-Carbonell A, Marques MC, Bustamante A, Fares MA, Rodrigo G, Gomez G (2019) Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biol 19:78

    Article  PubMed Central  PubMed  Google Scholar 

  • Shengli L, Yanjie N, Qian H, Jinyu W, Yuzhen C, Cunfu L (2017) Genome-wide identification of microRNAs that respond to drought stress in seedlings of tertiary relict Ammopiptanthus mongolicus. Hortic Plant J 3:209–218

    Article  Google Scholar 

  • Shi G-q, Fu J-y, Rong L-j, Zhang P-y, Guo C-j, Kai X (2018) TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. J Integr Agr 17:2369–2378

    Article  CAS  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpamicroRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shui X-R, Chen Z-W, Li J-X (2013) MicroRNA prediction and its function in regulating drought-related genes in cowpea. Plant Sci 210:25–35

  • Singh S, Kumar A, Panda D, Modi MK, Sen P (2020) Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. Plant Gene 21:100213

    Article  CAS  Google Scholar 

  • Song Z, Zhang L, Wang Y, Li H, Li S, Zhao H, Zhang H (2018) Constitutive expression of miR408 improves biomass and seed yield in Arabidopsis. Front Plant Sci 8:2114

    Article  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J-K (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Trindade I, Capitão C, Dalmay T, Fevereiro MP, Dos Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang Q, Zhang B (2013) Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530:26–32

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen L, Zhao M, Tian Q, Zhang W-H (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:367

  • Wang Y-G, An M, Zhou S-F, She Y-H, Li W-C, Fu F-L (2014) Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochem Genet 52:474–493

  • Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE 7:e48445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu B-f, Li W-f, Xu H-y, Qi L-w, Han S-y (2015) Role of cin-miR2118 in drought stress responses in Caragana intermedia and Tobacco. Gene 574:34–40

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang L, Wang S (2017) MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Gene 628:78–86

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7:e30039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie F, Stewart CN Jr, Taki FA, He Q, Liu H, Zhang B (2014) High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J 12:354–366. https://doi.org/10.1111/pbi.12142

  • Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804. https://doi.org/10.1093/jxb/eru437

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang N, Ma C, Qu Y, Si H, Wang D (2013) Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Comput Biol Chem 46:48–54

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang N, Mi X, Wu L, Ma R, Zhu X, Yao L, Jin X, Si H, Wang D (2014) Identification of miR159s and their target genes and expression analysis under drought stress in potato. Comput Biol Chem 53:204–213

    Article  CAS  Google Scholar 

  • Yang J, Zhang N, Zhou X, Si H, Wang D (2016) Identification of four novel stu-miR169s and their target genes in Solanum tuberosum and expression profiles response to drought stress. Plant Syst Evol 302:55–66

    Article  CAS  Google Scholar 

  • Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G (2019) The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 9:1–13

    Google Scholar 

  • Yin F, Gao J, Liu M, Qin C, Zhang W, Yang A, Xia M, Zhang Z, Shen Y, Lin H (2014) Genome-wide analysis of water-stress-responsive microRNA expression profile in tobacco roots. Funct Integr Genomics 14:319–332

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Qin C, Gao J, Liu M, Luo X, Zhang W, Liu H, Liao X, Shen Y, Mao L (2015) Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco. Int J Mol Sci 16:5714–5740

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhou L, Liu W, Huang P, Jiang R, Tang Z, Cheng P, Zeng J (2020) Identification of drought resistant miRNA in Macleaya cordata by high-throughput sequencing. Arch Biochem Biophys 684:108300

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ni Z, Wang Y, Wan H, Hu Z, Jiang Q, Sun X, Zhang H (2019) Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci 285:68–78

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Suo J, Shi B, Zhou C, Bai B, Bian H, Zhu M, Han N (2019) The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance. Plant Physiol Bioch 142:303–311

    Article  CAS  Google Scholar 

  • Yue E, Li C, Li Y, Liu Z, Xu J-H (2017a) MiR529a modulates panicle architecture through regulating squamosa promoter binding-like genes in rice (Oryza sativa). Plant Mol Biol 94:469–480

    Article  CAS  PubMed  Google Scholar 

  • Yue E, Liu Z, Li C, Li Y, Liu Q, Xu J-H (2017b) Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). Plant Cell Rep 36:1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Dong Y, Sun Y, Wang Q, Wang N, Wang F, Liu W, Li X, Chen H, Yao N, Guan L, Chen K, Cui X, Yang M, Li H (2014) Discovery and analysis of microRNAs in Leymus chinensis under saline-alkali and drought stress using high-throughput sequencing. PLoS One 9:e105417.  https://doi.org/10.1371/journal.pone.0105417

  • Zhang F, Luo X, Zhou Y, Xie J (2016) Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol Lett 38:711–721

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-P, Yu Y, Feng Y-Z, Zhou Y-F, Zhang F, Yang Y-W, Lei M-Q, Zhang Y-C, Chen Y-Q (2017a) MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol 175:1175–1185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JW, Long Y, Xue MD, Xiao XG, Pei XW (2017b) Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots. PLoS One 12:e0170330

  • Zhang J, Zhang H, Srivastava AK, Pan Y, Bai J, Fang J, Shi H, Zhu J-K (2018) Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 176:2082–2094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Yang J, Wang Z, Wen Y, Wang J, He W, Liu B, Si H, Wang D (2014) Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE 9:e95489

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590. https://doi.org/10.1016/j.bbrc.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17:233–251

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170:1578–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391. https://doi.org/10.1104/pp.112.208702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Sign Behav 9:1375–1391

    Article  Google Scholar 

  • Zhou R, Yu X, Ottosen C-O, Zhang T, Wu Z, Zhao T (2020) Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant Biol 20:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Bakhshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 278 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, B., Fard, E.M. The Arrangement of MicroRNAs in the Regulation of Drought Stress Response in Plants: A Systematic Review. Plant Mol Biol Rep 41, 369–387 (2023). https://doi.org/10.1007/s11105-023-01380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-023-01380-y

Keywords

Navigation