Skip to main content
Log in

Soil organic phosphorus is mainly hydrolyzed via phosphatases from ectomycorrhiza-associated bacteria rather than ectomycorrhizal fungi

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Mycorrhizal fungi-released phosphatases have long been claimed pivotal to mobilize soil organic phosphorus (P). We hypothesized that ectomycorrhizal (ECM) fungi, compared with their saprotrophic ancestors, evolved adaptive strategies to enhance the release of phosphatases to meet the P demand of ECM fungi and their host plants.

Methods

We analyzed genes potentially encoding secreted phosphatases in 103 fungal species, ECM fungi hyphae associated- and ectomycorrhizosphere phosphatase enzyme activities, and gene expression of Lactarius spp. and Laccaria bicolor fungi-secreted phosphatases during ECM formation. We also determined ectomycorrhizosphere abundance of bacterial phosphatase genes, and analyzed Pinus yunnanensis–Lactarius deliciosus ectomycorrhiza-associated P-mobilizing bacteria.

Results

We found that during transition from saprotrophy to ECM symbiosis, genes encoding fungal-secreted phosphatases did not manifest adaptive or convergent evolution. Among 10 genes potentially encoding secreted fungal phosphatases in Lactarius spp. and Laccaria bicolor, only two were up-regulated during ECM formation. Furthermore, unlike saprotrophic fungi, pure-cultured ECM fungi hyphae released very few or no phosphatases to the surroundings, while ECMs generally increased the phosphatase activities in the ectomycorrhizosphere under glasshouse conditions. Additionally, ECM-associated bacteria exhibited an increased abundance of P-cycling genes in the ectomycorrhizosphere under both glasshouse and field conditions. A substantial part of culturable bacteria from ECM tips hydrolyzed organic P and promoted fungal P acquisition.

Conclusion

We found no evidence for adaptive evolution of secreted phosphatases in ECM fungi; some ECM fungi may not even release phosphatases, and ECM-associated bacteria likely play a pivotal role in ECM-promoted organic P hydrolysis and plant P acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

RNAseq raw data used in this study are available in the NCBI Sequence Read Archive (SRA), accession no. PRJNA961221.

References

  • Albornoz FE, Burgess TI, Lambers H, Etchells H, Laliberté E (2017) Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J Ecol 105(2):549–557

    Article  Google Scholar 

  • Albornoz FE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: are mycorrhizas really functioning as they are widely believed to do? Soil Ecol Lett 3:73–82

    Article  CAS  Google Scholar 

  • Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, Koci M, Ballou A, Mendoza M, Ali R, Azcarate-Peril MA (2017) A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol 17:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Gieseke A, Godoy R, Härtel S (2006) Surface-bound phosphatase activity in ectomycorrhizal fungi: a comparative study between a colorimetric and a microscope-based method. Biol Fertil Soils 42(6):561–568

    Article  CAS  Google Scholar 

  • Alvarez M, Godoy R, Heyser W, Härtel S (2005) Anatomical–physiological determination of surface bound phosphatase activity in ectomycorrhizae of Nothofagus obliqua. Soil Biol Biochem 37(1):125–132

    Article  CAS  Google Scholar 

  • Anderson IC, Cairney JW (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31(4):388–406

    Article  CAS  PubMed  Google Scholar 

  • Antibus RK, Kroehler CJ, Linkins AE (1986) The effects of external pH, temperature, and substrate concentration on acid phosphatase activity of ectomycorrhizal fungi. Can J Bot 64(11):2383–2387

    Article  CAS  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70(4):794–801

    Article  CAS  Google Scholar 

  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol 162:525–534

    Article  CAS  Google Scholar 

  • Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26(16):3746–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baghel R, Sharma R, Pandey A (2009) Activity of acid phosphatase in the ectomycorrhizal fungus Cantharellus tropicalis under controlled conditions. J Trop for Sci 21(3):218–222

    Google Scholar 

  • Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. New Phytol 152(1):139–149

    Article  PubMed  Google Scholar 

  • Bernard M, Mouyna I, Dubreucq G, Debeaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latge JP (2002) Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148:2819–2829

    Article  CAS  PubMed  Google Scholar 

  • Brabcová V, Nováková M, Davidová A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210:1369–1381

    Article  PubMed  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4):1108–1115

    Article  PubMed  Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15(4):235–245

    Article  PubMed  Google Scholar 

  • Cairney JW (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344(1):51–71

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54(3):567–577

    Article  PubMed  Google Scholar 

  • Chang Y, Desirò A, Na H, Sandor L, Lipzen A, Clum A, Barry K, Grigoriev IV, Martin FM, Stajich JE (2019) Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol 222(1):511–525

    Article  PubMed  Google Scholar 

  • Colpaert JV, Van Laere A, Van Tichelen K, Van Assche J (1997) The use of inositol hexaphosphate as a phosphorus source by mycorrhizal and non-mycorrhizal Scots Pine (Pinus sylvestris). Funct Ecol 11(4):407–415

    Article  Google Scholar 

  • Courty PE, Pouysegur R, Buée M, Garbaye J (2006) Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biol Biochem 38(6):1219–1222

    Article  CAS  Google Scholar 

  • Darch T, Blackwell MSA, Chadwick D, Haygarth PM, Hawkins JMB, Turner BL (2016) Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis. Geoderma 284:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY (2018) Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352

    Article  CAS  PubMed  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome informatics 2009: genome informatics series, vol 23. World Scientific, pp 205-211

  • Gradowski T, Thomas SC (2006) Phosphorus limitation of sugar maple growth in central Ontario. For Ecol Manage 226(1–3):104–109

    Article  Google Scholar 

  • Guerin-Laguette A, Plassard C, Mousain D (2000) Effects of experimental conditions on mycorrhizal relationships between Pinus sylvestris and Lactarius deliciosus and unprecedented fruit-body formation of the Saffron milk cap under controlled soilless conditions. Can J Microbiol 46:790–799

    Article  CAS  PubMed  Google Scholar 

  • Ho I (1987) Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity, and phytohormone production. Can J For Res 17(1):31–35

    Article  CAS  Google Scholar 

  • Huang LL, Wang YL, Guerin-Laguette A, Wang R, Zhang P, Li YM, Yu FQ (2022) Ectomycorrhizal synthesis between two Tuber species and six tree species: are different host-fungus combinations having dissimilar impacts on host plant growth? Mycorrhiza 32:341–351

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Li Y, Yuan J, Wan S, Colinas C, He X, Shi X, Wang Y, Yu F (2023) Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings. Front Plant Sci 14:1134446

    Article  PubMed  PubMed Central  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104(1):81–86

    Article  CAS  Google Scholar 

  • Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24(5):1139–1151

    Article  Google Scholar 

  • Kluber LA, Tinnesand KM, Caldwell BA, Dunham SM, Yarwood RR, Bottomley PJ, Myrold DD (2010) Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biol Biochem 42(9):1607–1613

    Article  CAS  Google Scholar 

  • Lambers H (2022) Phosphorus acquisition and utilization in plants. Annu Rev Plant Biol 73:17–42

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste FP, Zemunik G (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424(1):11–33

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23(2):95–103

    Article  PubMed  Google Scholar 

  • Lidbury IDEA, Borsetto C, Murphy ARJ, Bottrill A, Jones AME, Bending GD, Hammond JP, Chen Y, Wellington EMH, Scanlan DJ (2021) Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J 15(4):1040–1055

    Article  CAS  PubMed  Google Scholar 

  • Lin VS, Rosnow JJ, McGrady MY, Smercina DN, Nuñez JR, Renslow RS, Moran JJ (2020) Non-destructive spatial analysis of phosphatase activity and total protein distribution in the rhizosphere using a root blotting method. Soil Biol Biochem 146:107820

    Article  CAS  Google Scholar 

  • Louche J, Ali MA, Cloutier-Hurteau B, Sauvage FX, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73(2):323–335

    CAS  PubMed  Google Scholar 

  • Luo G, Jin T, Zhang H, Peng J, Zuo N, Huang Y, Han Y, Tian C, Yang Y, Peng K, Fei J (2022) Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China. J Hazard Mater 422:126865

    Article  CAS  PubMed  Google Scholar 

  • Mangul S, Martin LS, Eskin E, Blekhman R (2019) Improving the usability and archival stability of bioinformatics software. Genome Biol 20:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14(12):760–773

    Article  CAS  PubMed  Google Scholar 

  • Mason A, Foster D, Bradley P, Golubchik T, Doumith M, Gordon NC, Pichon B, Iqbal Z, Staves P, Crook D (2018) Accuracy of different bioinformatics methods in detecting antibiotic resistance and virulence factors from Staphylococcus aureus whole-genome sequences. J Clin Microbiol 56(9):e01815-01817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElhinney C, Mitchell D (1993) Phosphatase activity of four ectomycorrhizal fungi found in a Sitka spruce-Japanese larch plantation in Ireland. Mycol Res 97(6):725–732

    Article  CAS  Google Scholar 

  • Meeds JA, Marty Kranabetter J, Zigg I, Dunn D, Miros F, Shipley P, Jones MD (2021) Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J 15(5):1478–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127(2):594–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sanchez-Garcia M, Morin E, Andreopoulos B, Barry KW, Bonito G, Buee M, Carver A, Chen C, Cichocki N, Clum A, Culley D, Crous PW, Fauchery L, Girlanda M, Hayes RD, Keri Z, LaButti K, Lipzen A, Lombard V, Magnuson J, Maillard F, Murat C, Nolan M, Ohm RA, Pangilinan J, Pereira MF, Perotto S, Peter M, Pfister S, Riley R, Sitrit Y, Stielow JB, Szollosi G, Zifcakova L, Stursova M, Spatafora JW, Tedersoo L, Vaario LM, Yamada A, Yan M, Wang P, Xu J, Bruns T, Baldrian P, Vilgalys R, Dunand C, Henrissat B, Grigoriev IV, Hibbett D, Nagy LG, Martin FM (2020) Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 11(1):5125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller K, Kubsch N, Marhan S, Mayer-Gruner P, Nassal P, Schneider D, Daniel R, Piepho H-P, Polle A, Kandeler E (2020) Saprotrophic and ectomycorrhizal fungi contribute differentially to organic P mobilization in Beech-Dominated forest ecosystems. Front Forests Glob Change 3:00047

    Article  Google Scholar 

  • Nehls U, Plassard C (2018) Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol 220(4):1047–1058

    Article  PubMed  Google Scholar 

  • Nei M (2013) Mutation-driven evolution. Oxford University Press, Oxford

  • Nguyen NH, Bruns TD (2015) The microbiome of Pinus muricata ectomycorrhizae: Community assemblages, fungal species effects, and Burkholderia as important bacteria in multipartnered symbioses. Microb Ecol 69:914–921

  • Nygren C, Rosling A (2009) Localisation of phosphomonoesterase activity in ectomycorrhizal fungi grown on different phosphorus sources. Mycorrhiza 19(3):197–204

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41(9):1782–1787

    Article  CAS  Google Scholar 

  • Parfitt R (1979) The availability of P from phosphate-goethite bridging complexes, desorption and uptake by ryegrass. Plant Soil 53(1):55–65

    Article  CAS  Google Scholar 

  • Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C (2015) Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front Microbiol 6:1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Plett JM, Tisserant E, Brun A, Morin E, Grigoriev IV, Kuo A, Martin F, Kohler A (2015) The mutualist Laccaria bicolor expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses. Mol Plant Microbe Interac 28(3):261–273

    Article  CAS  Google Scholar 

  • Rozmoš M, Bukovská P, Hršelová H, Kotianova M, Dudáš M, Gančarčíková K, Jansa J (2022) Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J 16(3):676–685

    Article  PubMed  Google Scholar 

  • Ruytinx J, Miyauchi S, Hartmann-Wittulsky S, de Freitas-Pereira M, Guinet F, Churin JL, Put C, Le-Tacon F, Veneault-Fourrey C, Martin F, Kohler A (2021) A transcriptomic atlas of the rctomycorrhizal fungus Laccaria bicolor. Microorganisms 9(12):9122612

    Article  Google Scholar 

  • Schenk G, Guddat L, Ge Y, Carrington L, Hume D, Hamilton S, De Jersey J (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 250(1–2):17–125

    Google Scholar 

  • Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL (2015) Less Is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32(5):1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Stuart EK, Castañeda-Gómez L, Macdonald CA, Wong-Bajracharya J, Anderson IC, Carrillo Y, Plett JM, Plett KL (2022) Species-level identity of Pisolithus influences soil phosphorus availability for host plants and is moderated by nitrogen status, but not CO2. Soil Biol Biochem 165:108520

    Article  CAS  Google Scholar 

  • Su K, Yuan J, Wang R, Huang L, Zhan J, Zhang X, Wan S, He X, Lambers H, Yu F, Wang Y (2024) Dual transcriptomic and metabolomic analyses provide novel insights into the role of vitamins A and B metabolism in ectomycorrhizal symbiosis between Pinus yunnanensis and Lactarius deliciosus. Physiol Plant: e14194. https://doi.org/10.1111/ppl.14194

  • Tang N, Lebreton A, Xu W, Dai Y, Yu F, Martin FM (2021) Transcriptome profiling reveals differential gene expression of secreted proteases and highly specific gene repertoires involved in Lactarius-Pinus symbioses. Front Plant Sci 12:714393

    Article  PubMed  PubMed Central  Google Scholar 

  • Tibbett M, Sanders F, Cairney J (1998) The effect of temperature and inorganic phosphorus concentration on acid phosphatase production and growth rate in arctic and temperate isolates of the ectomycorrhizal fungi Hebeloma spp. in axenic culture. Mycol Res 102:129–135

    Article  CAS  Google Scholar 

  • Tomar P, Sinha H (2014) Conservation of PHO pathway in ascomycetes and the role of Pho84. J Biosci 39(3):525–536

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Engelbrecht BM (2011) Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103(1):297–315

    Article  CAS  Google Scholar 

  • Vincent D, Kohler A, Claverol S, Solier E, Joets J, Gibon J, Lebrun MH, Plomion C, Martin F (2012) Secretome of the free-living mycelium from the ectomycorrhizal basidiomycete Laccaria bicolor. J Proteome Res 11(1):157–171

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang L, George TS, Feng G (2023) A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytol 238:859–873

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Guerin-Laguette A, Huang LL, Wang XH, Butler R, Wang Y, Yu FQ (2019) Mycorrhizal syntheses between Lactarius spp. section Deliciosi and Pinus spp. and the effects of grazing insects in Yunnan, China. Can J For Res 49(6):616–627

    Article  Google Scholar 

  • Wang R, Wang Y, Guerin-Laguette A, Zhang P, Colinas C, Yu F (2022) Factors influencing successful establishment of exotic Pinus radiata seedlings with co-introduced Lactarius deliciosus or local ectomycorrhizal fungal communities. Front Microbiol 13:973483

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lambers H (2020) Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil 447(1–2):135–156

    Article  CAS  Google Scholar 

  • Wang Y, Wang R, Lu B, Guerin-Laguette A, He X, Yu F (2021) Mycorrhization of Quercus mongolica seedlings by Tuber melanosporum alters root carbon exudation and rhizosphere bacterial communities. Plant Soil 467(1–2):391–403

    Article  CAS  Google Scholar 

  • Wu G, Miyauchi S, Morin E, Kuo A, Drula E, Varga T, Kohler A, Feng B, Cao Y, Lipzen A, Daum C, Hundley H, Pangilinan J, Johnson J, Barry K, LaButti K, Ng V, Ahrendt S, Min B, Choi IG, Park H, Plett JM, Magnuson J, Spatafora JW, Nagy LG, Henrissat B, Grigoriev IV, Yang ZL, Xu J, Martin FM (2022) Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytol 233(3):1383–1400

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Shang Q (2018) Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species. BMC Genom 19(1):646

    Article  Google Scholar 

  • Xu S, He Z, Guo Z, Zhang Z, Wyckoff GJ, Greenberg A, Wu CI, Shi S (2017) Genome-wide convergence during evolution of mangroves from woody plants. Mol Biol Evol 34(4):1008–1015

    CAS  PubMed  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3(4):470–480

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu YX, Guo X, Qin Y, Garrido-Oter R, Schulze-Lefert P, Bai Y (2021) High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat Protoc 16(2):988–1012

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12(10):2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210(3):1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li X, Ye L, Huang Y, Kang Z, Zhang B, Zhang X (2020) Colonization by Tuber melanosporum and Tuber indicum affects the growth of Pinus armandii and phoD alkaline phosphatase encoding bacterial community in the rhizosphere. Microbiol Res 239:126520

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Guo W, Wang J, Lambers H, Yin H (2023) Extraradical hyphae alleviate nitrogen deposition-induced phosphorus deficiency in ectomycorrhiza-dominated forests. New Phytol 239(5):1651–1664

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sincere thanks to Francis M. Martin (INRAE-Nancy) for providing Laccaria bicolor S238N strains and valuable personal communications. This work was supported by Yunnan Fundamental Research Projects (grant NO.202101AU070080) and National Natural Science Foundation of China (31901204 and 32170302) to YW. We also thank Yunnan High Level Talent Introduction Plans to YW and XH. HL received funding from the Deputy Vice Chancellor (Research) at the University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Lambers, Yi Zheng, Xinhua He, Fuqiang Yu or Yanliang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Stavros D. Veresoglou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jing Yuan, Rui Yan, and Xueqiong Zhang are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1167 kb)

Supplementary file2 (XLS 169 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Yan, R., Zhang, X. et al. Soil organic phosphorus is mainly hydrolyzed via phosphatases from ectomycorrhiza-associated bacteria rather than ectomycorrhizal fungi. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06649-z

Keywords

Navigation