Skip to main content
Log in

Localisation of phosphomonoesterase activity in ectomycorrhizal fungi grown on different phosphorus sources

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Phosphorus (P) is a major limiting nutrient for plants in boreal forest ecosystems where a substantial part of the total P is sequestered in organic compounds. Some ectomycorrhizal (ECM) fungi are known to produce phosphomonoesterases, enzymes that degrade organic P sources. Here, we test 16 ECM species for this enzymatic activity by growing them on media containing orthophosphate, phytic acid or apatite. A method with an overlay gel that determined both phosphomonoesterase activity and its spatial distribution was developed. The phosphomonoesterase activity was not significantly higher when growing on organic P; conversely some isolates only produced measurable enzyme activity when grown on apatite. Species-specific variations with respect to phosphomonoesterase activity as well as growth responses to different substrates were found. The production of phosphomonoesterases was found to be widespread in ECM fungi and the enzyme activity did not need induction by organic P. The enzyme activity was highest in the central parts of the mycelia, potentially reflecting breakdown and recycling of phospholipids from old hyphae or potentially higher mycelial density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aleksieva P, Micheva-Viteva S (2000) Regulation of extracellular acid phosphatase biosynthesis by phosphates in proteinase producing fungus Humicola lutea 120-5. Enzyme Microb Technol 27:570–575 doi:10.1016/S0141-0229(00)00237-4

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Godoy R, Heyser W, Härtel S (2004) Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus oblique. Mycologia 96:479–487 doi:10.2307/3762168

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Gieseke A, Godoy R, Härtel S (2006) Surface-bound phosphate activity in ectomycorrhizal fungi: a comparative study between a colorimetric and a microscope-based method. Biol Fertil Soils 42:561–568 doi:10.1007/s00374-005-0053-6

    Article  CAS  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70:794–801

    Article  CAS  Google Scholar 

  • Arnold WN (1987) Hydrolytic enzymes. In: Berry DR, Russell I, Stewart GG (eds) Yeast biotechnology. Allen and Unwin, London, UK, pp 369–400

    Chapter  Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol Biochem 5:249–257 doi:10.1016/0038-0717(73)90008-4

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Research 33, Database issue D34–D38

  • Bougher NL, Grove TS, Malajczuk N (1990) Growth and phosphorus acquisition of karri (Eucalyptus diversicolor f. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol 114:77–85 doi:10.1111/j.1469-8137.1990.tb00376.x

    Article  CAS  Google Scholar 

  • Burns GB, Dick RP (2002) Enzymes in the environment; activity, ecology and applications. Marcel Dekker, New York, NY

    Book  Google Scholar 

  • Colpaert JV, Van Laere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and leaf-saprophytic basidiomycetes colonising beech leaf litter. New Phytol 134:133–141 doi:10.1111/j.1469-8137.1996.tb01153.x

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1967) Metabolism of organic phosphates in soil. In: McLauren AD, Peterson GH (eds) Soil biochemistry. Marcel Dekker, New York, USA

    Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117 doi:10.1016/S0065-2113(08)60216-3

    Article  CAS  Google Scholar 

  • De Brouwere K, Thijs A, Hens M, Merckx R (2003) Forms and availability of soil phosphorus in temperate forests in southern Chile and Flanders. Gayana Bot 60:17–23

    Article  Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extrametrical mycelium. New Phytol 170:281–390 doi:10.1111/j.1469-8137.2006.01669.x

    Article  Google Scholar 

  • Häussling M, Marschner H (1989) Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce [Picea abies (L.) Karst.] trees. Biol Fertil Soils 8:128–133 doi:10.1007/BF00257756

    Article  Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol Lett 22:1705–1708 doi:10.1023/A:1005684031296

    Article  CAS  Google Scholar 

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Höiland K, Kjöller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE—a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068 doi:10.1111/j.1469-8137.2005.01376.x

    Article  PubMed  Google Scholar 

  • Kothe E, Müller D, Krause K (2002) Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J Appl Bot 76:127–131

    Google Scholar 

  • Landweert R, Hooffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254 doi:10.1016/S0169-5347(01)02122-X

    Article  Google Scholar 

  • Lindahl BD, Finlay RD (2006) Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. New Phytol 169:389–397 doi:10.1111/j.1469-8137.2005.01581.x

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Finlay RD, Cairney JWG (2005) Enzymatic activities of mycelia in mycorrhizal fungal communities. In: Dighton J, Oudemans P, White J (eds) The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York, pp 331–348

    Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12 doi:10.1111/j.1472-765X.2006.02046.x

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic fungi on the resistance of pine roots to pathogenic infection. Phytopathology 59:153–163

    Google Scholar 

  • Olsson PA, van Aarle IM, Allaway WG, Ashford AE, Rouhier H (2002) Phosphourus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162–1171 doi:10.1104/pp.009639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SC, Smith TJ, Biesi MS (1992) Activities of phosphomonoesterase and phosphodiesterase from Lumbricus terrestris. Soil Biol Biochem 24:873–876 doi:10.1016/0038-0717(92)90008-L

    Article  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doulse BM, Gupta VVSR, Grace PR (eds) Soil biota management in sustainable farming systems. CSIRO, Australia, pp 50–62

    Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783 doi:10.1046/j.1469-8137.2003.00829.x

    Article  CAS  Google Scholar 

  • Rosling A, Lindahl AD, Taylor AFS, Finlay RD (2004) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37 doi:10.1016/S0168-6496(03)00222-8

    Article  CAS  PubMed  Google Scholar 

  • Rosling A, Suttle KB, Johansson E, van Hees PAW, Banfield JF (2007) Phosphorus availability affects soil fungal dissolution of apatite. Geobiology 5:265–280 doi:10.1111/j.1472-4669.2007.00107.x

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453 doi:10.1104/pp.116.2.447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senna R, Simonin V, Silva-Neto MAC, Fialho E (2006) Induction of acid phosphatase activity during germination of maize (Zea mays) seeds. Plant Physiol Biochem 44:467–473 doi:10.1016/j.plaphy.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  • Tibbett M (2002) Considerations on the use of p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Microbiol Res 157:221–231 doi:10.1078/0944-5013-00154

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196:123–131 doi:10.1023/A:1004230525164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Rönnlund for the help extended in the laboratory. Andy Taylor and Björn Lindahl are gratefully acknowledged for helpful comments on the manuscript. This work was financially supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS-2006-267 and 2005-1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. R. Nygren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygren, C.M.R., Rosling, A. Localisation of phosphomonoesterase activity in ectomycorrhizal fungi grown on different phosphorus sources. Mycorrhiza 19, 197–204 (2009). https://doi.org/10.1007/s00572-008-0223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0223-0

Keywords

Navigation