Skip to main content
Log in

Surface-bound phosphatase activity in ectomycorrhizal fungi: a comparative study between a colorimetric and a microscope-based method

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

For the quantification of surface-bound phosphomonoesterase activity (SBPA) of fungi, roots, or mycorrhiza, a colorimetric method based on p-nitrophenyl phosphate (pNPP) is widely used. Unfortunately, this method does not reveal information about the localization of the surface-bound phosphomonoesterase (SBP). We introduce a method that localizes and quantifies SBPA in living hyphae of ectomycorrhizal fungi using confocal laser scanning microscopy of the hydrophilic substrate enzyme-labelled fluorescence (ELF-97) and compare it to the pNPP assay. ELF-97 turns into a strongly fluorescent precipitate upon activation by SBPA and forms bright fluorescent centres on the outer cell wall of the hyphae. Our data show that the enzymatic reaction is not substrate-limited during an incubation period of 15 min in fungal hyphae of Pisolithus tinctorius, Cenococcum geophilum, and Paxillus involutus. Image-processing routines determined the total intensity and the average number of the fluorescent ELF-97 centres per micrometre fungal hyphae of C. geophilum and Paxillus involutus. ELF-97 and pNPP detected similar variations of the SBPA at different pH values (3–7) during the measurement and different phosphorus (P) concentrations during the growth period of the fungi. The ELF-97 method revealed that C. geophilum and Paxillus involutus adapt in different ways to the variation of the P concentrations during the growth period by varying the number, the activity, or both properties of the SBP centres. The phosphatases show peak activities at different pH values, so the response of the fungal mycelium to varying P concentrations in soils is pH selective. In conclusion, ELF-97 is a promising substrate to reveal SBPA and adaptation strategies on a structural–physiological level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander IJ, Hardy K (1981) Surface phosphatase activity of Sitka spruce mycorrhizas from a serpentine site. Soil Biol Biochem 13:301–305

    Article  CAS  Google Scholar 

  • Alvarez M, Godoy R, Heyser W, Härtel S (2004) Surface bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua. Mycologia 96:479–487

    Article  CAS  Google Scholar 

  • Alvarez M, Godoy R, Heyser W, Härtel S (2005) Anatomical–physiological determination of surface bound phosphatase activity in ectomycorrhiza of Nothofagus obliqua based on image processed confocal fluorescence microscopy. Soil Biol Biochem 37:125–132

    Article  CAS  Google Scholar 

  • Antibus RK, Kroehler CJ, Linkins AE (1986) The effects of external pH, temperature, and substrate concentration on acid phosphatase activity of ectomycorrhizal fungi. Can J Bot 64:2383–2387

    Article  CAS  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70:794–801

    CAS  Google Scholar 

  • Antibus RK, Bower D, Dighton J (1997) Root surface phosphatase activities and uptake of 32P labelled inositol phosphate in field-collected grey birch and red maple roots. Mycorrhiza 7:39–46

    Article  CAS  Google Scholar 

  • Darzynkiewicz Z, Smolewski P, Bedner E (2001) Use of flow and laser scanning cytometry to study mechanisms regulating cell cycle and controlling cell death. Clin Lab Med 21:857–873

    PubMed  CAS  Google Scholar 

  • de Beer D, Schramm A, Santegoeds CM, Kühl M (1997) A nitrite microsensor for profiling environmental biofilms. Appl Environ Microb 63:973–977

    Google Scholar 

  • Dexheimer J, Aubert-Dufrense MP, Gérard J, Letacon F, Mousain D (1986) Étude de la locasilation ultrastructurale des activités phosphatasiques acides dans deux types d´ectomycorrhizes: Pinus nigra/nigricans/Hebeloma crustuliniforme et Pinus pinaster/Pisolithus tinctorius. Bull Soc Bot Fr 133:343–352

    Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213

    Article  Google Scholar 

  • Dighton J (1983) Phosphatase production by mycorrhizal fungi. Plant Soil 71:455–462

    Article  CAS  Google Scholar 

  • Härtel S, Zorn-Kruppa M, Tikhonova S, Heino P, Engelke M, Diehl H (2003) Staurosporine-induced apoptosis in human cornea epithelial cells in vitro. Cytometry 8:15–23

    Article  Google Scholar 

  • Härtel S, Fanani ML, Maggio B (2005a) Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys J 88:287–304

    Article  PubMed  CAS  Google Scholar 

  • Härtel S, Rojas R, Räth C, Guarda MI, Goicoechea O (2005b) Identification and classification of di- and triploid erythrocytes by multi-parameter image analysis: a new method for the quantification of triploidization rates in rainbow trout (Oncorhynchus mykiss). Arch Med Vet 37:1–5

    Article  Google Scholar 

  • Joner EJ, Johansen A (1999) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  Google Scholar 

  • Kamentsky LA, Kamentsky LD (1991) Microscope-based multiparameter laser scanning cytometer yielding data comparable to flow cytometry data. Cytometry 12:381–387

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dick WA, Tuovinen OH (2004) Fluorescence microscopy for visualization of soil microorganisms—a review. Biol Fertil Soils 39:301–311

    Article  CAS  Google Scholar 

  • McElhinney C, Mitchell DT (1993) Phosphatase activity of four ectomycorrhizal fungi found in a Sitka spruce–Japanese larch plantation in Ireland. Mycol Res 97:725–732

    Article  CAS  Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, pp 115–129

    Google Scholar 

  • Nannipieri P, Ceccanti S, Grego S (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis (2nd ed). Academic Press, London, UK

  • Straker CJ, Mitchell DT (1986) The activity and characterisation of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol 104:243–256

    Article  CAS  Google Scholar 

  • Schweiger PF, Rouhier H, Söderström B (2002) Visualisation of ectomycorrhizal rhizomorph structure using laser scanning confocal microscopy. Mycol Res 106:349–354

    Article  Google Scholar 

  • Tibbett M, Chambers SM, Cairney JWG (1998) Methods for determining extracellular and surface-bound phosphatase activities in ectomycorrhizal fungi. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 217–225

    Google Scholar 

  • Tibbett M, Sanders FE, Grantham K, Cairney JW (2000) Some potential inaccuracies of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Biol Fertil Soils 31:92–96

    Article  CAS  Google Scholar 

  • Tibbett M (2002) Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Microbiol Res 157:221–231

    Article  PubMed  CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    CAS  Google Scholar 

  • van Aarle I, Olsson PA, Söderström B (2001) Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluorogenic substrate. Mycologia 93:17–24

    Article  Google Scholar 

  • Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 42:413–437

    Google Scholar 

Download references

Acknowledgements

Maricel Alvarez is a postdoctoral fellow of Mecesup UCO 02–14 (Chile). This study is a contribution to Fondecyt 1040913 (Chile). Steffen Härtel is supported by Fondecyt 3030065 (Chile). Institutional support to the Centro de Estudios Científicos (CECS) from Empresas CMPC is gratefully acknowledged. CECS is a Millennium Science Institute and is funded in part by grants from Fundación Andes and the Tinker Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricel Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, M., Gieseke, A., Godoy, R. et al. Surface-bound phosphatase activity in ectomycorrhizal fungi: a comparative study between a colorimetric and a microscope-based method. Biol Fertil Soils 42, 561–568 (2006). https://doi.org/10.1007/s00374-005-0053-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-005-0053-6

Keywords

Navigation