Skip to main content
Log in

Organic carbon inputs shift the profiles of phosphorus cycling-related genes in maize rhizosphere

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Soil microbiome is the key driver mediating soil P transformation in agroecosystems. However, the underlying genomic information related to soil P cycling in response to organic C inputs is largely unknown.

Methods

By using metagenomic sequencing, we investigated the effect of P fertilization and C input (i.e., glucose and lignin) on functional profiles of microbial genes related to P cycling in bulk and rhizosphere soils. Maize plants were grown for 47 days in Ultisols with or without P-fertilizer history.

Results

Glucose decreased rhizosphere H2O-Pi concentrations in soil with P history, increased that in soil without P history; while lignin increased that in both soils. Ogranic C inputs increased the relative abundances of phnGHIJLMNP and pit genes by 17–138% and 2.3–31%, decreased those of phoB, phoR and pstABCS genes by 3.6–18%, 12–31% and 11–26%, respectively, in rhizosphere soils irrespective of P history. In the rhizosphere rather than bulk soil, the proportion of P starvation regulation-related genes was higher in lignin treated-soils without than with P history. Proteobacteria (10–89%) and Acidobacteria (0.41–57%) were the dominant phyla and main contributors to soil P transformation-related genes (e.g., appA, phoAD, gcd). Elevated soil pH induced by organic C inputs also diversified the composition of genes involved in P transformation.

Conclusions

Organic C altered P cycling-related gene composition irrespective of soil P status, which facilitated P transformation. Proteobacteria and Acidobacteria were vital in mediating C and P metabolisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971–978

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S (2016) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbiol 18:1988–2000

    Article  CAS  PubMed  Google Scholar 

  • Bernard L, Mougel C, Maron PA, Nowak V, Leveque J, Henault C, Haichar FEZ, Berge O, Marol C, Balesdent J (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9:752–764

    Article  CAS  PubMed  Google Scholar 

  • Bi QF, Li KJ, Zheng BX, Liu XP, Li HZ, Jin BJ, Ding K, Yang XR, Lin XY, Zhu YG (2020) Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ 703:134977

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH, He F, Zhang XH, Sun X, Zheng JF, Zheng JW (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87:164–181

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sun RB, Sun TT, Liang YT, Jiang YJ, Sun B (2018) Organic amendments shift the phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network during long-term fertilization regimes. Appl Soil Ecol 124:229–239

    Article  ADS  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Dai ZM, Liu GF, Chen HH, Chen CR, Wang JK, Ai SY, Wei D, Li DM, Ma B, Tang CX, Brookes PC, Xu JM (2020) Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J 14: 757–770.

    Article  CAS  PubMed  Google Scholar 

  • Derrien D, Marol C, Balesdent J (2004) The dynamics of neutral sugars in the rhizosphere of wheat: an approach by 13C pulse-labelling and GC/C/IRMS. Plant Soil 267:243–253

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol 7:01446

    Article  Google Scholar 

  • Ghodge SV, Cummings JA, Williams HJ, Raushel FM (2013) Discovery of a cyclic phosphodiesterase that catalyzes the sequential hydrolysis of both ester bonds to phosphorus. J Am Chem Soc 135:16360–16363.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RI, Bailey MJ, McNamara NP, Whiteley AS (2006) The functions and components of the Sourhope soil microbiota. Appl Soil Ecol 33:114–126

    Article  Google Scholar 

  • Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100

    Article  CAS  Google Scholar 

  • Han MG, Sun LJ, Gan DY, Fu LC, Zhu B (2020) Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biol Biochem 151:108019

    Article  CAS  Google Scholar 

  • Huang YL, Dai ZM, Lin JH, Qi Q, Luo Y, Dahlgren RA, Xu JM (2021a) Contrasting effects of carbon source recalcitrance on soil phosphorus availability and communities of phosphorus solubilizing microorganisms. J Environ Manag 298:113426

    Article  CAS  Google Scholar 

  • Huang YL, Dai ZM, Lin JH, Li DM, Ye HC, Dahlgren RA, Xu JM (2021b) Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biol Biochem 163:108465

    Article  CAS  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. Bioinformatics 11:119

    PubMed  PubMed Central  Google Scholar 

  • Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, O’Donnell AG (2010) Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem 42:1624–1631

    Article  CAS  Google Scholar 

  • Jin J, Krohn C, Franks AE, Wang XJ, Wood JL, Petrovski S, McCaskill M, Batinovic S, Xie ZH, Tang CX (2022) Elevated atmospheric CO2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat. Microbiome 10:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing ZW, Chen RR, Wei SP, Feng YZ, Zhang JB, Lin XH (2017) Response and feedback of C mineralization to P availability driven by soil microorganisms. Soil Biol Biochem 105:111–120

    Article  CAS  Google Scholar 

  • Kamble PN, Bååth E (2014) Induced N-limitation of bacterial growth in soil: effect of carbon loading and N status in soil. Soil Biol Biochem 74:11–20

    Article  CAS  Google Scholar 

  • Lang F, Bauhus J, Frossard E, George E, Kaiser K, Kaupenjohann M, Krüger J, Matzner E, Polle A, Prietzel J, Rennenberg H, Wellbrock N (2016) Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective. J Plant Nutr Soil Sc 179:129–135

    Article  CAS  Google Scholar 

  • Lange M, Azizi-Rad M, Dittmann G, Lange DF, Orme AM, Schroeter SA, Simon C, Gleixner (2023) Stability and carbon uptake of the soil microbial community is determined by differences between rhizosphere and bulk soil. Soil Biol Biochem 189:109280

    Article  Google Scholar 

  • Li J, Li ZA, Wang FM, Zou B, Chen Y, Zhao J, Mo QF, Li YW, Li XB, Xia HP (2015a) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol Fert Soils 51:207–215

    Article  CAS  Google Scholar 

  • Li DH, Liu CM, Luo RB, Sadakane K, Lam TW (2015b) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hao YB, Yan ZQ, Kang E, Wang JZ, Zhang KR, Li Y, Wu HD, Kang XM (2022) Long-term degradation from marshes into meadows shifts microbial functional diversity of soil phosphorus cycling in an alpine wetland of the Tibetan plateau. Land Degrad Dev 33:628–637

    Article  Google Scholar 

  • Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, Liao B, Shu WS, Li JT (2020) Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J 14:1600–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ling N, Zhu C, Xue C, Chen H, Duan YH, Peng C, Guo SW, Shen QR (2016) Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 99:137–149

    Article  CAS  Google Scholar 

  • Liu MH, Shen YK, Li Q, Xiao WF, Song XZ (2021) Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C:N:P stoichiometry in Chinese fir (Cunninghamia lanceolata) forests. Plant Soil 461:421–440

    Article  CAS  Google Scholar 

  • Ma XM, Zhou Z, Chen J, Xu H, Ma SH, Dippold MA, Kuzyakov Y (2023) Long-term nitrogen and phosphorus fertilization reveals that phosphorus limitation shapes the microbial community composition and functions in tropical montane forest soil. Sci Total Environ 854:158709

    Article  ADS  CAS  PubMed  Google Scholar 

  • McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO (2018) Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes. Metab Eng 48:82–93

    Article  CAS  PubMed  Google Scholar 

  • McLaren TI, Smernik RJ, McLaughlin MJ, McBeath TM, McCaskill MR, Robertson FA, Simpson RJ (2020) Soil phosphorus pools with addition of fertilizer phosphorus in a long-term grazing experiment. Nutr Cycl Agroecosys 116:151–164

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:00022

    Article  Google Scholar 

  • Mori T, Lu XK, Aoyagi R, Mo JM (2018) Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct Ecol 32:1145–1154

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36

    Article  Google Scholar 

  • Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E, Hirsch PR (2017) Land-use influences phosphatase gene microdiversity in soils. Environ Microbiol 19:2740–2753

    Article  CAS  PubMed  Google Scholar 

  • Ning QS, Hättenschwiler S, Lü XT, Kardol P, Zhang YH, Wei CZ, Xu CY, Huang JH, Li A, Yang JJ, Wang J, Peng Y, Peñuelas J, Sardans J, He JZ, Xu ZL, Gao YZ, Han XG (2021) Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob Chang Biol 27:5976–5988

    Article  CAS  PubMed  Google Scholar 

  • Nottingham AT, Hicks LC, Ccahuana AJQ, Salinas N, Bååth E, Meir P (2018) Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol Fert Soils 54:219–228

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Ragot SA, Kertesz MA, Bünemann EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl Environ Microb 81:7281–7289

    Article  ADS  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Follstad-Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol S 43:313–343

    Article  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75

    Article  CAS  Google Scholar 

  • Steinegger M, Söding J (2017) MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028

    Article  CAS  PubMed  Google Scholar 

  • Su YG, Huang G, Liu J (2023) Biocrusts alleviate the aggravating C limitation in microbial respiration with increasing aridity. Geoderma 429:116210

    Article  ADS  Google Scholar 

  • Sun Q, Qiu HS, Hu YJ, Wei XM, Chen XB, Ge TD, Wu JS, Su YR (2019) Cellulose and lignin regulate partitioning of soil phosphorus fractions and alkaline phosphomonoesterase encoding bacterial community in phosphorus-deficient soils. Biol Fert Soils 55:31–42

    Article  CAS  Google Scholar 

  • Sun TT, Wang YG, Guo YF, Jing X, Feng WT (2023) Contrasting elevational patterns of microbial carbon and nutrient limitation in soil from alpine meadow to desert. Catena 223:2023

    Article  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis: part 2. Microbiological and biochemical properties. Soil Science Society America, Madison, pp 775–833

    Google Scholar 

  • Tao Y, Zhou XB, Li YG, Liu HL, Zhang YM (2022) Short-term N and P additions differentially alter the multiple functional traits and trait associations of a desert ephemeral plant in China. Environ Exp Bot 200:104932

    Article  CAS  Google Scholar 

  • Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential fractionation. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science Lewis Publishers, Boca Raton, pp 75–86

    Google Scholar 

  • Trivedi P, Rochester IJ, Trivedi C, van Nostrand JD, Zhou JZ, Karunaratne S, Anderson IC, Singh BK (2015) Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol Biochem 91:169–181

    Article  CAS  Google Scholar 

  • Torres IF, Bastida F, Hernández T, Bombach P, Richnow HH, Garcia C (2014) The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass. Soil Biol Biochem 75:152–160

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA 111:5266–5270

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DD, Zhu ZK, Shahbaz M, Chen L, Liu SL, Inubushi K, Wu JS, Ge TD (2019) Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: a 100-day incubation experiment. Biol Fert Soils 55:701–712

    Article  CAS  Google Scholar 

  • Wei XM, Hu YJ, Razavi BS, Zhou J, Shen JL, Nannipieri P, Wu JS, Ge TD (2019) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem 131:62–70

    Article  CAS  Google Scholar 

  • Widdig M, Schleuss PM, Weig AR, Guhr A, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2019) Nitrogen and phosphorus additions alter the abundance of phosphorus-solubilizing bacteria and phosphatase activity in grassland soils. Front Environ Sci 7:00185

    Article  Google Scholar 

  • Wu JH, Liu WT, Tseng IC, Cheng SS (2001) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 147:373–382

    Article  CAS  PubMed  Google Scholar 

  • Wu JS, Huang M, Xiao HA, Su YR, Tong CL, Huang DY, Syers JK (2007) Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant Soil 290:333–342

    Article  CAS  Google Scholar 

  • Wu MY, Liu Z, Chen L, Pang DB, Xu XL, Zhang YQ, Ni XL, Hu Y, Li XB (2022) Elevation gradient shapes microbial carbon and phosphorous limitations in the Helan Mountains, Northwest China. Front Environ Sci 10:1041964

    Article  Google Scholar 

  • Xiao D, Che R, Liu X, Tan Y, Yang R, Zhang W, He X, Xu Z, Wang K (2019) Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biol Fert Soils 55:457–469

    Article  CAS  Google Scholar 

  • Xie JY, Chen MY, Zhang L, Niu Y, Liu XJ, Luo LC, Zou Y, Hu XF, Guo XM, Siemann E (2023) Soil aggregate size distribution alters CO2 but not N2O emission rates in Chinese fir (Cunninghamia lanceolata) plantations with N and P additions. J Plant Nutr Soil Sci 23:706–718

    Article  CAS  Google Scholar 

  • Xue ZJ, Liu CH, Zhou ZC, Wanek WF (2022) Extracellular enzyme stoichiometry reflects the metabolic C-and P-limitations along a grassland succession on the Loess Plateau in China. Appl Soil Ecol 179:104594

    Article  Google Scholar 

  • Zeng JX, Tu QC, Yu XL, Qian L, Wang C, Shu LF, Liu F, Liu SW, Huang ZJ, He JG, Yan QY, He ZL (2022) PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome 10:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Peng Y, Zhou JC, George TS, Feng G (2020) Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biol Biochem 142:107724

    Article  CAS  Google Scholar 

  • Zhang YJ, Gao W, Ma L, Luan HA, Tang JW, Li RN, Li MY, Huang SW, Wang L (2023) Long-term partial substitution of chemical fertilizer by organic amendments influences soil microbial functional diversity of phosphorus cycling and improves phosphorus availability in greenhouse vegetable production. Agric Ecosyst Environ 341:108193

    Article  CAS  Google Scholar 

  • Zhao FZ, Ren CJ, Zhang L, Han XH, Yang GH, Wang J (2018) Changes in soil microbial community are linked to soil carbon fractions after afforestation. Eur J Soil Sci 69:370–379

    Article  CAS  Google Scholar 

  • Zhao XC, Tian P, Sun ZL, Liu SG, Wang QK, Zeng ZQ (2022) Rhizosphere effects on soil organic carbon processes in terrestrial ecosystems: a meta-analysis. Geoderma 412:115739

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Program of Zhejiang Province (2022C02046), the National Natural Science Foundation of China (41991334), Agriculture Research System of China (CARS-01), Department of Education Project of Jiangxi Province (GJJ2200417) and Natural Science Foundation of Jiangxi Province (20232BAB213092).

Author information

Authors and Affiliations

Authors

Contributions

Jianming Xu designed the experiment, provided the fundings, and contributed to the revisions. Yanlan Huang performed the experiment, wrote the first draft of the manuscript. Jiahui Lin carried out the statistical analysis. Caixian Tang revised the manuscript critically.

Corresponding author

Correspondence to Jianming Xu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Zucong Cai.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1771 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lin, J., Tang, C. et al. Organic carbon inputs shift the profiles of phosphorus cycling-related genes in maize rhizosphere. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06605-x

Keywords

Navigation