Skip to main content
Log in

Dominant species and evenness level co-regulate litter mixture decomposition in a boreal peatland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

In boreal peatlands, climate warming and associated soil drying facilitate the growth of vascular plants at the cost of moss species, resulting in an alteration of species dominance in plant communities. However, how altered dominant species and evenness affect litter mixture decomposition is still unclear in these ecosystems.

Methods

We collected fresh litter from Larix gmelinii (tree), Betula fruticosa (shrub), Eriophorum vaginatum (sedge), and Sphagnum magellanicum (moss), and determined mass loss and nitrogen (N) release of four-species mixtures with varying dominant species and evenness at 10 and 20 oC during 360-day decomposition.

Results

Irrespective of the incubation temperature, B. fruticosa-dominated litter mixtures had greatest mass loss and N release throughout decomposition, while S. magellanicum-dominated litter mixtures had lowest values. Moreover, mass loss and N release of B. fruticosa-dominated litter mixtures decreased with elevating evenness after 360 days of decomposition, but the opposite trends were observed for litter mixtures dominated by the other three species. Increasing incubation temperature facilitated decomposition of all litter mixtures, with the lowest magnitude for S. magellanicum-dominated mixtures. Non-additive effects, especially positive effects, on mass loss and N release were common, which played a key role in enhancing the influences of dominant species and evenness on litter mixture decomposition. Moreover, the incidence of positive non-additive effects on mass loss decreased at 20 oC as litter decomposition proceeded.

Conclusions

Warming-induced increased dominance of vascular plants, especially shrubs, will amplify the warming effect on litter decomposition and N availability in boreal peatlands, thus generating positive feedback to climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barantal S, Roy J, Fromin N, Schimann H, Hattenschwiler S (2011) Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest. Oecologia 167:241–252

    Article  PubMed  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of Scots pine needle litter. II Influence of Chemical Composition. Ecol Bull 32:373–390

    CAS  Google Scholar 

  • Bonanomi G, Capodilupo M, Incerti G, Mazzoleni S (2014) Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant Soil 381:307–321

    Article  CAS  Google Scholar 

  • Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S (2010) Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331:481–496

    Article  CAS  Google Scholar 

  • Bradford MA, Maynard DS, Crowther TW, Frankson PT, Mohan JE, Steinrueck C, Veen CGF, King JR, Warren II RJ (2021) Belowground community turnover accelerates the decomposition of standing dead wood. Ecology 00:e03484. https://doi.org/10.1002/ecy.3484

  • Breeuwer A, Heijmans M, Robroek BJM, Limpens J, Berendse F (2008) The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos 117:1258–1268

    Article  CAS  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Buttler A, Robroek BJM, Laggoun-Defarge F, Jassey VEJ, Pochelon C, Bernard G, Delarue F, Gogo S, Mariotte P, Mitchell EAD, Bragazza L (2015) Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J Veg Sci 26:964–974

    Article  Google Scholar 

  • Cornelissen JHC, Van Bodegom PM, Aerts R, Callaghan TV, Van Logtestijn RSP, Alatalo J, Stuart Chapin F, Gerdol R, Gudmundsson J, Gwynnjones D (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • Dickson TL, Wilsey BJ (2009) Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness, and micro-topography. Plant Ecol 201:639–649

    Article  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability. Global Change Biol 21:388–395

    Article  Google Scholar 

  • Domisch T, Finér L, Laine J, Laiho R (2006) Decomposition and nitrogen dynamics of litter in peat soils from two climatic regions under different temperature regimes. Eur J Soil Biol 42:74–81

    Article  CAS  Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828

    Article  Google Scholar 

  • Favreau M, Pellerin S, Poulin M (2019) Tree encroachment induces biotic differentiation in Sphagnum-dominated bogs. Wetlands 39:841–852

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store - A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409:149–149

    Article  CAS  PubMed  Google Scholar 

  • Fudyma JD, Lyon J, Aminitabrizi R, Gieschen H, Tfaily MM (2019) Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct 3:1–17

    Article  Google Scholar 

  • García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2017) Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. J Ecol 105:968–978

    Article  CAS  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Golovatskaya EA, Dyukarev EA (2008) Carbon budget of oligotrophic mire sites in the Southern Taiga of Western Siberia. Plant Soil 315:19–34

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  PubMed  Google Scholar 

  • Grime J (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Hajek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry 103:45–57

    Article  CAS  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters E, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hattenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  CAS  PubMed  Google Scholar 

  • Hobbie SE, Gough L (2004) Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia 140:113–124

    Article  PubMed  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2002) Litter quality and interactive effects in litter mixtures: more negative interactions under elevated CO2? J Ecol 90:1009–1016

    Article  Google Scholar 

  • Hoorens B, Stroetenga M, Aerts R (2009) Litter mixture interactions at the level of plant functional types are additive. Ecosystems 13:90–98

    Article  Google Scholar 

  • IPCC (2018) Summary for Policymakers. In Masson-Delmotte V et al. (eds.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization

  • Jin HJ, Yu QH, Guo DX, He RX, Yu SP, Sun GY, Li YW (2007) Degradation of permafrost in the Xing’an Mountains, Northeast China. Permafrost Periglac 18:245–258

    Article  Google Scholar 

  • King RF, Dromph KM, Bardgett RD (2002) Changes in species evenness of litter have no effect on decomposition processes. Soil Biol Bioch 34:1959–1963

    Article  CAS  Google Scholar 

  • Kirwan L, LÜScher A, SebastiÀ MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, DalmannsdÓTtir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, HÖGlind M, Huguenin-Elie O, Iliadis C, JØRgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smit HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1:0–12. https://cran.r-project.org/web/packages/FD/index.html.

  • Li D, Peng S, Chen B (2013) The effects of leaf litter evenness on decomposition depend on which plant functional group is dominant. Plant Soil 365:255–266

    Article  CAS  Google Scholar 

  • Lin GG, Mao R, Zhao L, Zeng DH (2013) Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability. Plant Soil 373:649–657

    Article  CAS  Google Scholar 

  • Lummer D, Scheu S, Butenschoen O (2012) Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos 121:1649–1655

    Article  CAS  Google Scholar 

  • Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM (2020) Peatland warming strongly increases fine-root growth. Proc Natl Acad Sci USA 117:17627–17634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao R, Zhang X, Song C, Wang X, Finnegan PM (2018) Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China. Sci Total Environ 626:678–683

    Article  CAS  PubMed  Google Scholar 

  • Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963

    Article  Google Scholar 

  • Palozzi JE, Lindo Z (2017) Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands. Soil Biol Biochem 115:161–168

    Article  CAS  Google Scholar 

  • Plazas-Jiménez D, Cianciaruso MV (2021) Leaf decomposition depends on nutritional trait values but increasing trait variability does not always increase decomposition efficiency. Oikos 130:1171–1179

    Article  CAS  Google Scholar 

  • Santonja M, Rodríguez-Pérez H, Le Bris N, Piscart C (2020) Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams. Ecosystems 23:400–416

    Article  Google Scholar 

  • Schellekens J, Bindler R, Martínez-Cortizas A, McClymont EL, Abbott GD, Biester H, Pontevedra-Pombal X, Buurman P (2015) Preferential degradation of polyphenols from Sphagnum – 4-Isopropenylphenol as a proxy for past hydrological conditions in Sphagnum-dominated peat. Geochim Cosmochim Ac 150:74–89

    Article  CAS  Google Scholar 

  • Smith DL, Johnson L (2004) Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85:3348–3361

    Article  Google Scholar 

  • Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517

    Article  Google Scholar 

  • Thompson DK, Simpson BN, Beaudoin A (2016) Using forest structure to predict the distribution of treed boreal peatlands in Canada. Forest Ecol Manag 372:19–27

    Article  Google Scholar 

  • Treat CC, Kleinen T, Broothaerts N, Dalton AS, Dommain R, Douglas TA, Drexler JZ, Finkelstein SA, Grosse G, Hope G, Hutchings J, Jones MC, Kuhry P, Lacourse T, Lahteenoja O, Loisel J, Notebaert B, Payne RJ, Peteet DM, Sannel ABK, Stelling JM, Strauss J, Swindles GT, Talbot J, Tarnocai C, Verstraeten G, Williams CJ, Xia Z, Yu Z, Valiranta M, Hattestrand M, Alexanderson H, Brovkin V (2019) Widespread global peatland establishment and persistence over the last 130,000 y. Proc Natl Acad Sci USA 116:4822–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Song C, Sun X, Wang J, Zhang X, Mao R (2013) Soil carbon and nitrogen across wetland types in discontinuous permafrost zone of the Xiao Xing’an Mountains, northeastern China. CATENA 101:31–37

    Article  CAS  Google Scholar 

  • Ward SE, Ostle NJ, McNamara NP, Bardgett RD (2010) Litter evenness influences short-term peatland decomposition processes. Oecologia 164:511–520

    Article  PubMed  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol Lett 16:1285–1293

    Article  PubMed  Google Scholar 

  • Ward SE, Orwin KH, Ostle NJ, Briones MJI, Thomson BC, Griffiths RI, Oakley S, Quirk H, Bardgett RD (2015) Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology 96:113–123

    Article  PubMed  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Xing W, Bao K, Gallego-Sala AV, Charman DJ, Zhang Z, Gao C, Lu X, Wang G (2015) Climate controls on carbon accumulation in peatlands of Northeast China. Quaternary Sci Rev 115:78–88

    Article  Google Scholar 

  • Yu Z, Beilman DW, Frolking S, Macdonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. Eos Trans AGU 92:97–98

    Article  Google Scholar 

  • Zhang XH, Sun XX, Mao R (2017) Effects of litter evenness, nitrogen enrichment and temperature on short-term litter decomposition in freshwater marshes of northeast China. Wetlands 37:145–152

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Finnegan PM, Tan W, Mao R (2019) Effects of litter mixtures on aerobic decomposition rate and its temperature sensitivity in a boreal peatland. Geoderma 354:113890

    Article  CAS  Google Scholar 

  • Zhang XH, Wang L, Jiang W, Mao R (2020a) Functional identity and functional diversity co-regulate litter mixture decomposition and nitrogen release in boreal riparian forest ponds. Biogeochemistry 151:99–111

    Article  CAS  Google Scholar 

  • Zhang X, Wang Y, Jiang W, Mao R (2020b) Effect of expanded shrub litter on decomposition of graminoid litter in a temperate freshwater marsh. Plant Soil 451:409–418

    Article  CAS  Google Scholar 

  • Zhou Y, Wang Y, Gao X, Yue H (1996) Temperatures and distribution of permafrost in northeastern China under a warming climate. J Glaciol Geocryol 18:139–147 (In Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was financed by the National Natural Science Foundation of China (Nos. 41671091 and 31570479). We are grateful to the editor and the reviewers for their constructive comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Mao.

Additional information

Responsible Editor: Alfonso Escudero.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1070 KB)

Supplementary file2 (XLSX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y., Jiang, S. et al. Dominant species and evenness level co-regulate litter mixture decomposition in a boreal peatland. Plant Soil 474, 423–436 (2022). https://doi.org/10.1007/s11104-022-05346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05346-z

Keywords

Navigation