Skip to main content
Log in

Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background and aims

Litter decomposition is a critical process in terrestrial ecosystems and, since in natural conditions plant litter occurs in mixtures, understanding the interactive effects of mixed litter is of great ecological relevance. In this context, we test the hypothesis that N transfer between high quality litter to N-poor substrates are at the base of synergistic interactions, positively affecting litter decay rate, temperature sensitivity, and changes of organic C quality.

Methods

We carried out a manipulative experiment using four organic substrates, encompassing a wide range of biochemical quality (Hedera helix and Quercus ilex leaf litter, cellulose strips and woody sticks), each decomposing either separately or in matched pair mixtures for 360 days. Organic substrates were characterized for mass loss, C and N content and by 13C CPMAS NMR to assess biochemical quality changes.

Results

Litter response to mixing was related to the biochemical quality of the components in the mixture: additive when substrates with similarly high (H. helix and Q. ilex) or low (cellulose and wood) N content were paired, but synergistic when substrates with contrasting N content were associated (either of the two leaf litters with either cellulose or wood). Overall, no antagonist effects were observed in this experiment. Interestingly, decomposition of cellulose and wood showed an higher temperature sensitivity, compared to monospecific substrates, when paired with N rich materials. Significant N transfer was found from N rich litter to N poor substrates and 13C CPMAS NMR showed rapid changes of C quality of cellulose and wood sticks only when paired with N rich litter.

Conclusions

Our findings support the hypothesis that mixing litters of different quality, with quality expressed in terms of C/N ratio and N content, increases decomposition rate and temperature sensitivity of the lower quality substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Ågren GI, Bosatta E, Magill AH (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98

    Article  Google Scholar 

  • Almendros G, Dorado J, González-Vila FJ, Blanco MJ, Lankes U (2000) 13C NMR assessment of decomposition patterns during composting of forest shrub biomass. Soil Biol Biochem 32:793–804

    Article  CAS  Google Scholar 

  • Berg B, Matzner E (1997) The effect of N deposition on the mineralization of C from plant litter and humus. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation and carbon sequestration, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Berglund SL, Ågren GI (2012) When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121:1112–1120

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S (2010) Decomposition and nutrient dynamics in mixed litter of mediterranean species. Plant Soil 331:481–496

    Article  CAS  Google Scholar 

  • Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V, Mingo A, Lanzotti V, Mazzoleni S (2011) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol 191:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol Biochem 56:40–48

    Article  CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A (2014) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol Lett 17:1–12

    Article  PubMed  Google Scholar 

  • Chapman SK, Koch GW (2007) What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil 299:153–162

    Article  CAS  Google Scholar 

  • Chapman K, Whittaker JB, Heal OW (1988) Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agric Ecosyst Environ 24:33–40

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climatic change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gessner MO (2005) Proximate lignin and cellulose. In: Graca MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition. A Practical Guide. Springer Verlag, The Netherlands, pp 115–120

    Chapter  Google Scholar 

  • Giardina CP, Ryan M (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  PubMed  Google Scholar 

  • Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol Biochem 40:1567–1574

    Article  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol 1, Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Ann Rev Ecol Syst 36:191–218

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405

    Article  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2003) Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137:578–586

    Article  PubMed  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227

    Article  PubMed  Google Scholar 

  • Lecerf A, Marie G, Kominoski JS, LeRoy CJ, Bernadet C, Swan CM (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169

    Article  PubMed  Google Scholar 

  • Lummer D, Scheu S, Butenschoen O (2012) Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos 121:1649–1655

    Article  CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Schimel JP, Hättenschwiler S (2007) Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39:1428–1436

    Article  CAS  Google Scholar 

  • Schwendener CM, Lehmann J, de Camargo PB, Luizão RC, Fernandes E (2005) Nitrogen transfer between high-and low-quality leaves on a nutrient-poor Oxisol determined by 15 N enrichment. Soil Biol Biochem 37:787–794

    Article  CAS  Google Scholar 

  • Tan Y, Chen J, Yan L, Huang J, Wang L, Chen S (2013) Mass loss and nutrient dynamics during litter decomposition under three mixing treatments in a typical steppe in inner Mongolia. Plant Soil 366:107–118

    Article  CAS  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835

    Article  CAS  Google Scholar 

  • Wardle DA, Yeates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062

    Article  CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JH, Zanne AE, Wirth C, Coomes DA (2008) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The 13C-CPMAS NMR measurements were performed at the CERMANU-Interdepartmental Research Centre, University of Napoli Federico II. The work has been supported with grants by MIUR (PRIN 2005–050197 and FISR MESCOSAGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Bonanomi.

Additional information

Responsible Editor: Juha Mikola..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOC 4315 kb)

Figure S2

(DOC 1037 kb)

Table S1

(DOC 55 kb)

Table S2

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonanomi, G., Capodilupo, M., Incerti, G. et al. Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant Soil 381, 307–321 (2014). https://doi.org/10.1007/s11104-014-2119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2119-4

Keywords

Navigation