Skip to main content

Advertisement

Log in

Influence of long-term nutrient manipulation on specific leaf area and leaf nutrient concentrations in savanna woody species of contrasting leaf phenologies

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The Neotropical Savanna in Central Brazil (Cerrado) is characterized by periodic fires and soils with extremely low nutrient levels. We used long-term field experiments to investigate how frequent fires and long-term changes in soil nutrient availability would affect leaf structure and leaf nutrient status of Cerrado trees.

Methods

We measured specific leaf area (SLA, the ratio of leaf area per leaf dry mass) and leaf nutrient concentrations in 15 tree species of distinct leaf phenologies subjected to eight treatments, including control. Treatments comprised various conditions of nutrient availability (fertilization, addition and removal of litter) and fire regime (controlled biennial fires). The control consisted of undisturbed natural vegetation.

Results

Leaf traits generally varied among species. Species responded to fertilization, exhibiting higher Ca and Mg leaf concentrations, while SLA, and leaf N, P and K concentrations did not differ across treatments. We found significant differences reflecting contrasting ecological strategies among phenological groups: deciduous species had higher nutrient leaf concentrations and SLA, while evergreen species showed the lowest values and briefly deciduous species showed intermediate values.

Conclusions

We found low leaf-level responses to nutrient manipulations, probably reflecting the conservative resource-use strategy typical of nutrient-poor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010a) A multi-trait approach reveals the structure and the relative importance of intra-vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201

    Article  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613

    Article  Google Scholar 

  • Araújo JF, Haridasan M (2007) Relação entre deciduidade e concentrações foliares de nutrientes em espécies lenhosas do cerrado. Rev Bras Bot 30:533–542

    Article  Google Scholar 

  • Barger NN, D'Antonio CM, Ghneim T, Brink K, Cuevas E (2002) Nutrient limitation to primary productivity in a secondary savanna in Venezuela. Biotropica 34:493–501

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants - an economic analogy. Annu Rev Ecol Evo Syst 16:363–392

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005) Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees 19:296–304

    Article  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant Cell Environ 29:2153–2167

    Article  CAS  PubMed  Google Scholar 

  • Bustamante MM, de Brito DQ, Kozovits AR, Luedemann G, de Mello TR, de Siqueira PA, Munhoz CB, Takahashi FS (2012) Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecol 213:795–808

    Article  Google Scholar 

  • Caldas LS, Bravo C, Piccolo H, Faria C (1992) Measurement of leaf area with a hand-scanner linked to a microcomputer. Rev Bras Fisio Veg 4:17–20

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Evo Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chapin FS III (1991) Integrated responses of plants to stress. Bioscience 41:29–36

    Article  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Cordell S, Goldstein G, Meinzer F, Vitousek P (2001) Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia 127:198–206

    Article  CAS  PubMed  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer Verlag, Berlin, pp 82–105

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588

    Article  Google Scholar 

  • da Silva Júnior MC, dos Santos GC (2005) 100 Árvores do Cerrado: guia de campo. Rede de sementes do Cerrado, Brasília

    Google Scholar 

  • Edwards C, Sanson GD, Aranwela N, Read J (2000) Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst 134:261–277

    Article  Google Scholar 

  • Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341

    Article  Google Scholar 

  • Epstein E, Bloom A (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Assoc, Inc, Sunderland

    Google Scholar 

  • Field C, Mooney H (1986) Photosynthesis-nitrogen relationship in wild plants. On the economy of plant form and function: proceedings of the sixth maria moors cabot symposium, evolutionary constraints on primary productivity, adaptive patterns of energy capture in plants, harvard forest, August 1983. Cambridge University Press, Cambridge

  • Franco AC (1998) Seasonal patterns of gas exchange, water relations and growth of it Roupala montana, an evergreen savanna species. Plant Ecol 136:69–76

    Article  Google Scholar 

  • Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees Struct Funct 19:326–335

    Article  Google Scholar 

  • Franco AC, Matsubara S, Orthen B (2007) Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees. Tree Physiol 27:717–725

    Article  CAS  PubMed  Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob Ecol Biogeogr 8:223–241

    Article  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian cerrado and their development. J Biogeogr 1:97–108

    Article  Google Scholar 

  • Garten CT (1976) Correlations between concentrations of elements in plants. Nature 261:686–688

    Article  CAS  Google Scholar 

  • Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiol 28:395–404

    Article  PubMed  Google Scholar 

  • Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, New Jersey

    Google Scholar 

  • Grime JP, Cornelissen JH, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 1:489–494

    Article  Google Scholar 

  • Haridasan M (2000) Nutrição mineral de plantas nativas do cerrado. Rev Bras Fisio Veg 12:54–64

    CAS  Google Scholar 

  • Haridasan M (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz J Plant Physiol 20:183–195

    Article  Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N-and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646–657

    Article  CAS  Google Scholar 

  • Jacobson TKB, Bustamante MM, Kozovits AR (2011) Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions. Environ Poll 159:2236–2242

    Article  CAS  Google Scholar 

  • Kauffman JB, Cummings D, Ward D (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecology 82:519–531

    Article  Google Scholar 

  • Kozovits A, Bustamante M, Garofalo C, Bucci S, Franco A, Goldstein G, Meinzer F (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–1043

    Article  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S, Williams NS, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147

    Google Scholar 

  • Lehmann CE, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209

    Article  PubMed  Google Scholar 

  • Lehmann CE, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP, Williams RJ, Fensham RJ, Felfili J (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–552

    Article  CAS  PubMed  Google Scholar 

  • Medina E, Silva JF (1990) Savannas of northern South America: a steady state regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 1:403–413

    Article  Google Scholar 

  • Meinzer F, Goldstein G, Franco A, Bustamante M, Igler E, Jackson P, Caldas L, Rundel P (1999) Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Funct Ecol 13:273–282

    Article  Google Scholar 

  • Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848

    Article  PubMed  Google Scholar 

  • Miatto RC, Wright IJ, Batalha MA (2016) Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant Soil 404:13–33

    Article  CAS  Google Scholar 

  • Miranda HS, Bustamante MMC, Miranda AC (2002) The fire factor. In: Oliveira PS, Marquis R (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68

  • Nardoto GB, da Cunha Bustamante MM, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201

    Article  Google Scholar 

  • Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642

    Article  Google Scholar 

  • Oliveras I, Meirelles ST, Hirakuri VL, Freitas CR, Miranda HS, Pivello VR (2013) Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int J Wildland Fire 22:368–380

    Article  CAS  Google Scholar 

  • Peres J, Suhet A, Vargas M, Drozdowicz A (1983) Litter production in areas of Brazilian “cerrados”. Pesquisa Agropecuária Brasileira, Brasília

    Google Scholar 

  • Pivello VR, Oliveras I, Miranda HS, Haridasan M, Sato MN, Meirelles ST (2010) Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant Soil 337:111–123

    Article  CAS  Google Scholar 

  • Poorter H, Garnier E (1999) Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 81–120

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:1191–1191

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/. Accessed 10 Jan 2017

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Buschena C, Tjoelker MG, Wrage K, Knops J, Tilman D, Machado JL (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytol 157:617–631

    Article  Google Scholar 

  • Rossatto DR, Franco AC (2017) Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form. Oecol 183:953–962

    Article  Google Scholar 

  • Santiago LS (2015) Nutrient limitation of eco-physiological processes in tropical trees. Trees 29:1291–1300

    Article  CAS  Google Scholar 

  • Scalon MC, Rossatto DR, Franco AC (2014) Do litter manipulations affect leaf functional traits of savanna woody plants? Plant Ecol 215:111–120

    Article  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees. Tree Physiol 27:551–559

    Article  PubMed  Google Scholar 

  • Sugiyama S, Gotoh M (2010) How meristem plasticity in response to soil nutrients and light affects plant growth in four Festuca grass species. New Phytol 185:747–758

    Article  CAS  PubMed  Google Scholar 

  • Silva LC, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842

    Article  CAS  Google Scholar 

  • Taudiere A, Violle C (2015) cati: an R package using functional traits to detect and quantify multi-level community assembly processes. Ecography 39:699–708

    Article  Google Scholar 

  • Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E (2000a) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91

    Article  CAS  Google Scholar 

  • Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000b) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936

    Article  Google Scholar 

  • Viani RA, Rodrigues RR, Dawson TE, Lambers H, Oliveira RS (2014) Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. Perspect Plant Ecol Evol Syst 16:64–74

    Article  Google Scholar 

  • Vico G, Thompson SE, Manzoni S, Molini A, Albertson JD, Almeida-Cortez JS, Fay PA, Feng X, Guswa AJ, Liu H (2015) Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology 8:660–681

    Article  Google Scholar 

  • Villalobos-Vega R, Goldstein G, Haridasan M, Franco AC, Miralles-Wilhelm F, Scholz FG, Bucci SJ (2011) Leaf litter manipulations alter soil physicochemical properties and tree growth in a Neotropical savanna. Plant Soil 346:385–397

    Article  CAS  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MCS was supported by a postdoctoral fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil. ACF was was supported by Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) and CNPq. We thank RECOR/IBGE for the logistic support and Fabricius Domingos for reviewing early versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Corrêa Scalon.

Additional information

Responsible Editor: Hans Lambers

Electronic supplementary material

ESM 1

(XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scalon, M.C., Haridasan, M. & Franco, A.C. Influence of long-term nutrient manipulation on specific leaf area and leaf nutrient concentrations in savanna woody species of contrasting leaf phenologies. Plant Soil 421, 233–244 (2017). https://doi.org/10.1007/s11104-017-3437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3437-0

Keywords

Navigation