Skip to main content
Log in

Familial neurohypophyseal diabetes insipidus: clinical, genetic and functional studies of novel mutations in the arginine vasopressin gene

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Familial neurohypophyseal diabetes insipidus (FNDI) is a rare disorder characterized by childhood-onset progressive polyuria and polydipsia due to mutations in the arginine vasopressin (AVP) gene. The aim of the study was to describe the clinical and molecular characteristics of families with neurohypophyseal diabetes insipidus.

Methods

Five Portuguese families with autosomal dominant FNDI underwent sequencing of the AVP gene and the identified mutations were functionally characterized by in vitro studies.

Results

Three novel and two recurrent heterozygous mutations were identified in the AVP gene. These consisted of one initiation codon mutation in the signal peptide coding region (c.2T > C, p.Met1?), three missense mutations in the neurophysin II (NPII) coding region (c.154T > C, p.Cys52Arg; c.289C > G, p.Arg97Gly; and c.293G > C, p.Cys98Ser), and one nonsense mutation in the NPII coding region (c.343G > T, p.Glu115Ter). In vitro transfection of neuronal cells with expression vectors containing each mutation showed that the mutations resulted in intracellular retention of the vasopressin prohormone. Patients showed progressive symptoms of polyuria and polydipsia, but with wide variability in severity and age at onset. No clear genotype–phenotype correlation was observed.

Conclusion

The intracellular accumulation of mutant vasopressin precursors supports the role of cellular toxicity of the mutant proteins in the etiology of the disorder and explains the progressive onset of the disorder. These findings further expand the AVP mutational spectrum in FNDI and contribute to the understanding of the molecular pathogenic mechanisms involved in FNDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data is presented in the article and/or available upon request.

References

  1. Christ-Crain M, Bichet DG, Fenske WK, Goldman MB, Rittig S, Verbalis JG, Verkman AS (2019) Diabetes insipidus. Nat Rev Dis Primers 5(1):54. https://doi.org/10.1038/s41572-019-0103-2

    Article  PubMed  Google Scholar 

  2. Refardt J (2020) Diagnosis and differential diagnosis of diabetes insipidus: update. Best Pract Res Clin Endocrinol Metab 34:101398. https://doi.org/10.1016/j.beem.2020.101398

    Article  CAS  PubMed  Google Scholar 

  3. Patti G, Ibba A, Morana G, Napoli F, Fava D, Di Iorgi N, Maghnie M (2020) Central diabetes insipidus in children: diagnosis and management. Best Pract Res Clin Endocrinol Metab 34:101440. https://doi.org/10.1016/j.beem.2020.101440

    Article  CAS  PubMed  Google Scholar 

  4. Ito M, Mori Y, Oiso Y, Saito H (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Investig 87(2):725–728. https://doi.org/10.1172/jci115052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riddell DC, Mallonee R, Phillips JA, Parks JS, Sexton LA, Hamerton JL (1985) Chromosomal assignment of human sequences encoding arginine vasopressin-neurophysin II and growth hormone releasing factor. Somat Cell Mol Genet 11(2):189–195. https://doi.org/10.1007/BF01534707

    Article  CAS  PubMed  Google Scholar 

  6. Robertson GL (2001) Antidiuretic hormone Normal and disordered function. Endocrinol Metab Clin North Am 30(3):671–694. https://doi.org/10.1016/s0889-8529(05)70207-3

    Article  CAS  PubMed  Google Scholar 

  7. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136(6):665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spiess M, Friberg M, Beuret N, Prescianotto-Baschong C, Rutishauser J (2020) Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus. Mol Cell Endocrinol 501:110653. https://doi.org/10.1016/j.mce.2019.110653

    Article  CAS  PubMed  Google Scholar 

  9. Ozata M, Tayfun C, Kurtaran K, Yetkin I, Beyhan Z, Corakci A, Caglayan S, Alemdaroglu A, Gundogan MA (1997) Magnetic resonance imaging of posterior pituitary for evaluation of the neurohypophyseal function in idiopathic and autosomal dominant neurohypophyseal diabetes insipidus. Eur Radiol 7(7):1098–1102. https://doi.org/10.1007/s003300050261

    Article  CAS  PubMed  Google Scholar 

  10. Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol 81(3):345–348. https://doi.org/10.1007/BF00305879

    Article  CAS  PubMed  Google Scholar 

  11. Braverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Intern Med 63:503–508. https://doi.org/10.7326/0003-4819-63-3-503

    Article  CAS  PubMed  Google Scholar 

  12. Spiess M, Beuret N, Rutishauser J (2020) Genetic forms of neurohypophyseal diabetes insipidus. Best Pract Res Clin Endocrinol Metab 34:101432. https://doi.org/10.1016/j.beem.2020.101432

    Article  CAS  PubMed  Google Scholar 

  13. Repaske DR, Medlej R, Gultekin EK, Krishnamani MR, Halaby G, Findling JW, Phillips JA 3rd (1997) Heterogeneity in clinical manifestation of autosomal dominant neurohypophyseal diabetes insipidus caused by a mutation encoding Ala-1–>Val in the signal peptide of the arginine vasopressin/neurophysin II/copeptin precursor. J Clin Endocrinol Metab 82(1):51–56. https://doi.org/10.1210/jcem.82.1.3660

    Article  CAS  PubMed  Google Scholar 

  14. Chitturi S, Harris M, Thomsett MJ, Bowling F, McGown I, Cowley D, Leong GM, Batch J, Cotterill AM (2008) Utility of AVP gene testing in familial neurohypophyseal diabetes insipidus. Clin Endocrinol 69(6):926–930. https://doi.org/10.1111/j.1365-2265.2008.03303.x

    Article  Google Scholar 

  15. Srinivasan R, Ball S, Ward-Platt M, Bourn D, McAnulty C, Cheetham T (2013) Utility of genetic testing in suspected familial cranial diabetes insipidus. Endocrinol Diab Metab Case Rep 2013:130068. https://doi.org/10.1530/edm-13-0068

    Article  Google Scholar 

  16. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database C, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443. https://doi.org/10.1038/s41586-020-2308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814. https://doi.org/10.1093/nar/gkg509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7(10):e46688. https://doi.org/10.1371/journal.pone.0046688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576. https://doi.org/10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  21. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, Massouras A (2019) VarSome: the human genomic variant search engine. Bioinformatics 35(11):1978–1980. https://doi.org/10.1093/bioinformatics/bty897

    Article  CAS  PubMed  Google Scholar 

  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  23. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16(15):7351–7367. https://doi.org/10.1093/nar/16.15.7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goking NQ, Chertow BS, Robertson GL, Rittig S, Siggaard C, Pedersen EB (2001) A novel AVP-neurophysin gene mutation in familial neurohypophyseal diabetes insipidus presenting with nocturnal enuresis. J Endocr Genet 2(2):105–113. https://doi.org/10.1515/IJDHD.2001.2.2.105

    Article  CAS  Google Scholar 

  25. Bullmann C, Kotzka J, Grimm T, Heppner C, Jockenhovel F, Krone W, Muller-Wieland D (2002) Identification of a novel mutation in the arginine vasopressin-neurophysin II gene in familial central diabetes insipidus. Exp Clin Endocrinol Diab 110(3):134–137. https://doi.org/10.1055/s-2002-29091

    Article  CAS  Google Scholar 

  26. Toustrup LB, Kvistgaard H, Palmfeldt J, Bjerre CK, Gregersen N, Rittig S, Corydon TJ, Christensen JH (2018) The novel Ser18del AVP variant causes inherited neurohypophyseal diabetes insipidus by mechanisms shared with other signal peptide variants. Neuroendocrinology 106(2):167–186. https://doi.org/10.1159/000477246

    Article  CAS  PubMed  Google Scholar 

  27. Beuret N, Rutishauser J, Bider MD, Spiess M (1999) Mechanism of endoplasmic reticulum retention of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus. J Biol Chem 274(27):18965–18972. https://doi.org/10.1074/jbc.274.27.18965

    Article  CAS  PubMed  Google Scholar 

  28. Birk J, Friberg MA, Prescianotto-Baschong C, Spiess M, Rutishauser J (2009) Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum. J Cell Sci 122(Pt 21):3994–4002. https://doi.org/10.1242/jcs.051136

    Article  CAS  PubMed  Google Scholar 

  29. Christensen JH, Siggaard C, Corydon TJ, deSanctis L, Kovacs L, Robertson GL, Gregersen N, Rittig S (2004) Six novel mutations in the arginine vasopressin gene in 15 kindreds with autosomal dominant familial neurohypophyseal diabetes insipidus give further insight into the pathogenesis. Eur J Hum Genet 12(1):44–51. https://doi.org/10.1038/sj.ejhg.5201086

    Article  CAS  PubMed  Google Scholar 

  30. Tian D, Cen J, Nie M, Gu F (2016) Identification of five novel arginine vasopressin gene mutations in patients with familial neurohypophyseal diabetes insipidus. Int J Mol Med 38(4):1243–1249. https://doi.org/10.3892/ijmm.2016.2703

    Article  CAS  PubMed  Google Scholar 

  31. Rutishauser J, Boni-Schnetzler M, Boni J, Wichmann W, Huisman T, Vallotton MB, Froesch ER (1996) A novel point mutation in the translation initiation codon of the pre-pro-vasopressin-neurophysin II gene: cosegregation with morphological abnormalities and clinical symptoms in autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 81(1):192–198. https://doi.org/10.1210/jcem.81.1.8550751

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Castano A, Madariaga L, De Nanclares GP, Vela A, Rica I, Gaztambide S, Martinez R, De LaPiscina IM, Urrutia I, Aguayo A, Velasco O, Familial neurohypophyseal diabetes insipidus Spanish working g, Castano L (2020) Forty-one individuals with mutations in the AVP-NPII gene associated with familial neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa069

    Article  PubMed  Google Scholar 

  33. Siggaard C, Christensen JH, Corydon TJ, Rittig S, Robertson GL, Gregersen N, Bolund L, Pedersen EB (2005) Expression of three different mutations in the arginine vasopressin gene suggests genotype-phenotype correlation in familial neurohypophyseal diabetes insipidus kindreds. Clin Endocrinol 63(2):207–216. https://doi.org/10.1111/j.1365-2265.2005.02327.x

    Article  CAS  Google Scholar 

  34. Patti G, Scianguetta S, Roberti D, Di Mascio A, Balsamo A, Brugnara M, Cappa M, Casale M, Cavarzere P, Cipriani S, Corbetta S, Gaudino R, Iughetti L, Martini L, Napoli F, Peri A, Salerno MC, Salerno R, Passeri E, Maghnie M, Perrotta S, Di Iorgi N (2019) Familial neurohypophyseal diabetes insipidus in 13 kindreds and 2 novel mutations in the vasopressin gene. Eur J Endocrinol 181(3):233–244. https://doi.org/10.1530/eje-19-0299

    Article  CAS  PubMed  Google Scholar 

  35. Russell TA, Ito M, Ito M, Yu RN, Martinson FA, Weiss J, Jameson JL (2003) A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J Clin Investig 112(11):1697–1706. https://doi.org/10.1172/jci18616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rutishauser J, Kopp P, Gaskill MB, Kotlar TJ, Robertson GL (1999) A novel mutation (R97C) in the neurophysin moiety of prepro-vasopressin-neurophysin II associated with autosomal-dominant neurohypophyseal diabetes insipidus. Mol Genet Metab 67(1):89–92. https://doi.org/10.1006/mgme.1999.2825

    Article  CAS  PubMed  Google Scholar 

  37. Mundschenk J, Rittig S, Siggaard C, Hensen J, Lehnert H (2001) A new mutation of the arginine vasopressin-neurophysin II gene in a family with autosomal dominant neurohypophyseal diabetes insipidus. Exp Clin Endocrinol Diab 109(8):406–409. https://doi.org/10.1055/s-2001-18994

    Article  CAS  Google Scholar 

  38. Hansen LK, Rittig S, Robertson GL (1997) Genetic basis of familial neurohypophyseal diabetes insipidus. Trends Endocrinol Metab 8(9):363–372. https://doi.org/10.1016/s1043-2760(97)00157-4

    Article  CAS  PubMed  Google Scholar 

  39. Baglioni S, Corona G, Maggi M, Serio M, Peri A (2004) Identification of a novel mutation in the arginine vasopressin-neurophysin II gene affecting the sixth intrachain disulfide bridge of the neurophysin II moiety. Eur J Endocrinol 151(5):605–611. https://doi.org/10.1530/eje.0.1510605

    Article  CAS  PubMed  Google Scholar 

  40. DiMeglio LA, Gagliardi PC, Browning JE, Quigley CA, Repaske DR (2001) A missense mutation encoding cys(67) –> gly in neurophysin ii is associated with early onset autosomal dominant neurohypophyseal diabetes insipidus. Mol Genet Metab 72(1):39–44. https://doi.org/10.1006/mgme.2000.3117

    Article  CAS  PubMed  Google Scholar 

  41. Barat C, Simpson L, Breslow E (2004) Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry 43(25):8191–8203. https://doi.org/10.1021/bi0400094

    Article  CAS  PubMed  Google Scholar 

  42. Christensen JH, Kvistgaard H, Knudsen J, Shaikh G, Tolmie J, Cooke S, Pedersen S, Corydon TJ, Gregersen N, Rittig S (2013) A novel deletion partly removing the AVP gene causes autosomal recessive inheritance of early-onset neurohypophyseal diabetes insipidus. Clin Genet 83(1):44–52. https://doi.org/10.1111/j.1399-0004.2011.01833.x

    Article  CAS  PubMed  Google Scholar 

  43. Ito M, Jameson JL, Ito M (1997) Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J Clin Investig 99(8):1897–1905. https://doi.org/10.1172/jci119357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hagiwara D, Grinevich V, Arima H (2019) A novel mechanism of autophagy-associated cell death of vasopressin neurons in familial neurohypophysial diabetes insipidus. Cell Tissue Res 375(1):259–266. https://doi.org/10.1007/s00441-018-2872-4

    Article  CAS  PubMed  Google Scholar 

  45. Hayashi M, Arima H, Ozaki N, Morishita Y, Hiroi M, Ozaki N, Nagasaki H, Kinoshita N, Ueda M, Shiota A, Oiso Y (2009) Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am J Physiol Regul Integr Comp Physiol 296(5):R1641-1649. https://doi.org/10.1152/ajpregu.00034.2009

    Article  CAS  PubMed  Google Scholar 

  46. Ito M, Yu RN, Jameson JL (1999) Mutant vasopressin precursors that cause autosomal dominant neurohypophyseal diabetes insipidus retain dimerization and impair the secretion of wild-type proteins. J Biol Chem 274(13):9029–9037. https://doi.org/10.1074/jbc.274.13.9029

    Article  CAS  PubMed  Google Scholar 

  47. Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21(10):1332–1340. https://doi.org/10.1038/s41593-018-0235-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tochiya M, Hagiwara D, Azuma Y, Miyata T, Morishita Y, Suga H, Onoue T, Tsunekawa T, Takagi H, Ito Y, Iwama S, Goto M, Banno R, Arima H (2018) Chemical chaperone 4-phenylbutylate reduces mutant protein accumulation in the endoplasmic reticulum of arginine vasopressin neurons in a mouse model for familial neurohypophysial diabetes insipidus. Neurosci Lett 682:50–55. https://doi.org/10.1016/j.neulet.2018.06.013

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Portuguese Foundation for Science and Technology (PTDC/SAU-GMG/098419/2008).

Author information

Authors and Affiliations

Authors

Contributions

MIA: Methodology, Investigation, Writing—original draft. ÂF: Methodology, Investigation. LG: Resources. IP: Resources. MM: Resources. PM: Resources. SGS: Resources. SC: Investigation. TQ: Investigation. IG: Investigation. MCL: Conceptualization, Funding acquisition, Project administration, Supervision; Writing—review & editing.

Corresponding author

Correspondence to Manuel Carlos Lemos.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The study was approved by the Ethics Committee of the Faculty of Health Sciences, University of Beira Interior (Ref: CE-FCS-2012-012).

Informed consent

Written informed consent was obtained from all subjects or their legal guardians.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvelos, M.I., Francisco, Â., Gomes, L. et al. Familial neurohypophyseal diabetes insipidus: clinical, genetic and functional studies of novel mutations in the arginine vasopressin gene. Pituitary 24, 400–411 (2021). https://doi.org/10.1007/s11102-020-01119-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-020-01119-y

Keywords

Navigation