Skip to main content
Log in

The multiplicity of roles for (bi)carbonate in photosystem II operation in the hypercarbonate-requiring cyanobacterium Arthrospira maxima

  • Published:
Photosynthetica

Abstract

Arthrospira maxima is unique among cyanobacteria, growing at alkaline pH (<11) in concentrated (bi)carbonate (1.2 M saturated) and lacking carbonic anhydrases. We investigated dissolved inorganic carbon (DIC) roles within PSII of A. maxima cells oximetrically and fluorometrically, monitoring the light reactions on the donor and acceptor sides of PSII. We developed new methods for removing DIC based on a (bi)carbonate chelator and magnesium for (bi)carbonate ionpairing. We established relative affinities of three sites: the water-oxidizing complex (WOC), non-heme iron/QA, and solvent-accessible arginines throughout PSII. Full reversibility is achieved but (bi)carbonate uptake requires light. DIC depletion at the non-heme iron site and solvent-accessible arginines greatly reduces the yield of O2 due to O2 uptake, but accelerates the PSII–WOC cycle, specifically the S2→S3 and S3→S0 transitions. DIC removal from the WOC site abolishes water oxidation and appears to influence free energy stabilization of the WOC from a site between CP43-R357 and Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

alpha:

miss

beta:

double hit

Chl:

chlorophyll

delta:

backward transition

DIC:

dissolved inorganic carbon

DMBQ:

2,5-dimethyl-p-benzoquinone

epsilon:

deactivation

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

FRRF:

fast repetition rate fluorometry

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

PET:

photosynthetic electron transport

PQ:

plastoquinone

S0–S4:

oxidation states of the WOC, “S-states”

VZAD (model):

Vinyard-Zachary-Ananyev-Dismukes model

WOC:

water oxidizing complex

YSS :

steady-state yield

References

  • Ananyev G., Dismukes G.C.: How fast can Photosystem II split water? Kinetic performance at high and low frequencies.–Photosynth. Res. 84: 355–365, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ananyev G., Gates C., Dismukes G.C.: The oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II.–BBA-Bioenergetics 1857: 1380–1391, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Ananyev G., Gates C., Dismukes G.C.: Biogenesis and assembly of the CaMn4O5 core of photosynthetic water oxidases and inorganic mutants.–In: Scott R. (ed.): Metalloprotein Active Site Assembly. John Wiley & Sons, Chichester 2017.

    Google Scholar 

  • Ananyev G., Nguyen T., Putnam-Evans C., Dismukes G.C.: Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi) carbonate functioning in the water oxidizing complex of photosystem II.–Photoch. Photobio. Sci. 4: 991–998, 2005.

    Article  CAS  Google Scholar 

  • Armstrong C.T., Mason P.E., Anderson J.R., Dempsey C.E.: Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels.–Sci. Rep. 6: 21759, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Askerka M., Vinyard D.J., Brudvig G.W., Batista V.S.: NH3 Binding to the S2 state of the O2-evolving complex of photosystem II: Analogue to H2O binding during the S2→ S3 transition.–Biochemistry 54: 5783–5786, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Babcock G.T., Barry B.A., Debus R.J. et al.: Water oxidation in photosystem II: from radical chemistry to multielectron chemistry.–Biochemistry 28: 9557–9565, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Baranov S., Tyryshkin A., Katz D. et al.: Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation.–Biochemistry 43: 2070–2079, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Brinkert K., De Causmaecker S., Krieger-Liszkay A. et al.: Bicarbonate-induced redox tuning in photosystem II for regulation and protection.–P. Natl. Acad. Sci. USA 113: 12144–12149, 2016.

    Article  CAS  Google Scholar 

  • Capone M., Narzi D., Bovi D., Guidoni L.: Mechanism of water delivery to the active site of photosystem II along the S2 to S3 transition.–J. Phys. Chem. Lett. 7: 592–596, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Carrieri D., Ananyev G., Brown T., Dismukes G.C.: In vivo bicarbonate requirement for water oxidation by photosystem II in the hypercarbonate-requiring cyanobacterium Arthrospira maxima.–J. Inorg. Biochem. 101: 1865–1874, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Clausen J., Beckmann K., Junge W., Messinger J.: Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution.–Plant Physiol. 139: 1444–1450, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dasgupta J., Ananyev G.M., Dismukes G.C.: Photoassembly of the water-oxidizing complex in photosystem II.–Coordin. Chem. Rev. 252: 347–360, 2008.

    Article  CAS  Google Scholar 

  • Dasgupta J., Tyryshkin A.M., Baranov S.V., Dismukes G.C.: Bicarbonate coordinates to Mn3+ during photo-assembly of the catalytic Mn4Ca core of photosynthetic water oxidation: EPR characterization.–Appl. Magn. Reson. 37: 137–150, 2010.

    Article  CAS  Google Scholar 

  • Diner B.A., Petrouleas V., Wendoloski J.J.: The iron-quinone electron-acceptor complex of photosystem II.–Physiol. Plantarum 81: 423–436, 1991.

    Article  CAS  Google Scholar 

  • Drake B.G., Gonzàlez-Meler M.A., Long S.P.: More efficient plants: a consequence of rising atmospheric CO2?–Annu. Rev. Plant Phys. 48: 609–639, 1997.

    Article  CAS  Google Scholar 

  • Ferreira K.N., Iverson T.M., Maghlaoui K. et al.: Architecture of the photosynthetic oxygen-evolving center.–Science 303: 1831–1838, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gates C., Ananyev G., Dismukes G.C.: The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.–BBA-Bioenergetics 1857: 1550–1560, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, van Rensen J.: Photosystem II reaction centers and bicarbonate.–In: Deisenhofer j. (ed.): Photosynthetic Reaction Centers. Pp. 357–389, Academic Press, San Diego 1993.

    Chapter  Google Scholar 

  • Hillier W., McConnell I., Badger M.R. et al.: Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II.–Biochemistry 45: 2094–2102, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hunger J., Neueder R., Buchner R., Apelblat A.: A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.–J. Phys. Chem. B 117: 615–622, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Hwang H.J., Dilbeck P., Debus R.J., Burnap R.L.: Mutation of arginine 357 of the CP43 protein of photosystem II severely impairs the catalytic S-state cycle of the H2O oxidation complex.–Biochemistry 46: 11987–11997, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ippolito J.A., Alexander R.S., Christianson D.W.: Hydrogen bond stereochemistry in protein structure and function.–J. Mol. Biol. 215: 457–471, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Khorobrykh A., Dasgupta J., Kolling D.R. et al.: Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn2+ photo-oxidation by anoxygenic bacterial reaction centers.–Chem. Bio. Chem. 14: 1725–1731, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Klimov V.V., Allakhverdiev S.I., Feyziev Y.M., Baranov S.V.: Bicarbonate requirement for the donor side of photosystem II.–FEBS Lett. 363: 251–255, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Klimov V., Baranov S.: Bicarbonate requirement for the wateroxidizing complex of photosystem II.–BBA-Bioenergetics 1503: 187–196, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kolber Z.S., Prášil O., Falkowski P.G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols.–BBABioenergetics 1367: 88–106, 1998.

    Article  CAS  Google Scholar 

  • Koroidov S., Shevela D., Shutova T. et al.: Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation.–P. Natl. Acad. Sci. USA 111: 6299–6304, 2014.

    Article  CAS  Google Scholar 

  • Kuriata A.M., Chakraborty M., Henderson J.N. et al: ATP and magnesium promote cotton short-form ribulose-1, 5- bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations.–Biochemistry 53: 7232–7246, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Lubitz W., Cox N., Rapatskiy L. et al.: Light-induced water oxidation in photosynthesis.–J. Biol. Inorg. Chem. 19: S350–S350, 2014.

    Google Scholar 

  • Roach T., Sedoud A., Krieger-Liszkay A.: Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.–BBABioenergetics 1827: 1183–1190, 2013.

    Article  CAS  Google Scholar 

  • Rutherford A.W., Govindjee, Inoue Y.: Charge accumulation and photochemistry in leaves studied by thermo-luminescence and delayed light-emission.–P. Natl. Acad. Sci. USA 81: 1107–1111, 1984.

    Article  CAS  Google Scholar 

  • Shen J.-R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis.–Annu. Rev. Plant Biol. 66: 23–48, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Shevela D., Eaton-Rye J.J., Shen J.-R., Govindjee: Photosystem II and the unique role of bicarbonate: A historical perspective.–BBA-Bioenergetics 1817: 1134–1151, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Shevela D., Su J.-H., Klimov V., Messinger J.: Hydrogencarbonate is not a tightly bound constituent of the wateroxidizing complex in photosystem II.–BBA-Bioenergetics 1777: 532–539, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Snel J.F.H., van Rensen J.J.S.: Reevaluation of the role of electron flow in broken chloroplasts.–Plant Physiol. 75: 146–150, 1984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stemler A.: Inhibition of photosystem II by formate. Possible evidence for a direct bicarbonate and formate in the regulation of photosynthetic role of bicarbonate in photosynthetic oxygen evolution.–BBA-Bioenergetics 593: 103–112, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient.–J. Photoch. Photobio. B 104: 236–257, 2011.

    Article  CAS  Google Scholar 

  • van Rensen J.J.S., Tonk W.J.M., de Bruijn S.M.: Involvement of bicarbonate in the protonation of the secondary quinone electron acceptor of photosystem II via the non-haem iron of the quinone-iron acceptor complex.–FEBS Lett. 226: 347–351, 1988.

    Article  Google Scholar 

  • van Rensen J.J.S., Xu C., Govindjee: Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis.–Physiol. Plantarum 105: 585–592, 1999.

    Article  Google Scholar 

  • Vermaas W.F., Rutherford A.W.: EPR measurements on the effects of bicarbonate and triazine resistance on the acceptor side of photosystem II.–FEBS Lett. 175: 243–248, 1984.

    Article  CAS  Google Scholar 

  • Vinyard D.J., Zachary C.E., Ananyev G., Dismukes G.C.: Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: A mathematical solution to asymmetric Markov chains.–BBA-Bioenergetics 1827: 861–868, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Vogt L., Ertem M.Z., Pal R. et al.: Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca2+ or Ca2+ substituted by Sr2+.–Biochemistry 54: 820–825, 20

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A., Tomaselli L.: Arthrospira (Spirulina): systematics and ecophysiology.–In: Whitton B.A.(ed.): The Ecology of Cyanobacteria. Pp. 505–522. Springer, Dordrecht 2000

    Google Scholar 

  • Wincencjusz H., van Gorkom H.J., Yocum C.F.: The photosynthetic oxygen evolving complex requires chloride for its redox state S2→ S3 and S3→ S0 transitions but not for S0→ S1 or S1→ S2 transitions.–Biochemistry 36: 3663–3670, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T., Govindjee: A new site of bicarbonate effect in photosystem II of photosynthesis: Evidence from chlorophyll fluorescence transients in spinach chloroplasts.–BBABioenergetics 387: 403–408, 1975.

    Article  CAS  Google Scholar 

  • Zarrouk C.: [Contribution to the study of Cyanophyceae, influence of various physical and chemical factors on growth and photosynthesis of Spirulina maxima (Setch and Gardner) Geitler.]–J. Univ de Paris, 1966. [In French]

    Google Scholar 

  • Zhang H., Joseph J., Gurney M., et al.: Bicarbonate enhances peroxidase activity of Cu, Zn-superoxide dismutase role of carbonate anion radical and scavenging of carbonate anion radical by metalloporphyrin antioxidant enzyme mimetics.–J. Biol. Chem. 277: 1013–1020, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Dismukes.

Additional information

Dedicated to Prof. Govindjee on the occasion of his 85th birthday.

Acknowledgements: This work was funded by the Department of Energy, Basic Energy Sciences, Grant DE-FG02-10ER16195, and by the Stanford University Global Climate and Energy Project, activity number 96. We thank Dr. Dmitry Shevela for constructive advice and previous research, Prof. A. W. Rutherford for research which provided a foundation for our own work, and Prof. Govindjee for a long lifetime of progress on this subject and a great deal of prior advice.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananyev, G., Gates, C. & Dismukes, G.C. The multiplicity of roles for (bi)carbonate in photosystem II operation in the hypercarbonate-requiring cyanobacterium Arthrospira maxima. Photosynthetica 56, 217–228 (2018). https://doi.org/10.1007/s11099-018-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0781-0

Additional key words

Navigation